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1. Introduction and research questions

Throughout the world erosion is a problem of considerable proportion (Rodrigo Comino, et al., 2016).
Erosion by wind or water detaches soil particles, which are deposited elsewhere. This process leads
to fertile topsoil being washed away. Not only does this lead to soil loss at the higher located parts on
a slope, it also causes the soil to be deposited elsewhere, often at an inconvenient place such asin a
village, on a road or in a reservoir. Soil erosion models (SEMs) have been used as a tool to
understand and predict soil erosion on both short- and long-term scales (Baartman et al., 2013;
Schoorl, Veldkamp, & Bouma, 2002; Coulthard, Hancock, & Lowry, 2012). SEMs use inputs such as a
digital elevation model (DEM), the amount and intensity of rainfall and soil characteristics to predict
the amount and location of soil erosion and runoff for a certain rainfall event. These models are
often event-based, meaning that they require input for a certain rainfall event and give according
output. These models can be used to estimate the effect of a rainfall event on a landscape with
reasonable accuracy (Pandey, Himanshu, Mishra, & Singh, 2016). This is potentially crucial
information in landscapes that are not flat, such as the study area of this research, South Limburg
(van der Velde et al., 2018). During rainfall events, erosion of soil in the higher parts of the landscape
can lead to mudflows in the lower parts. Knowing the spatial patterns and quantity of soil erosion
can be vital information in preventing mudflows in populated areas. LISEM (Limburg Soil Erosion
Model) is an example of an event-based SEM able to calculate runoff and the amount of sediment for
a given rainfall event. Usually, the model is calibrated by adjusting parameters such as erodibility,
deposition or hydraulic conductivity (Baartman et al., 2013). LISEM uses different input parameters
to process and calculate erosion and runoff. Some of these parameters, like hydraulic conductivity
and Manning’s N, change model output more than others (Sheikh et al., 2010; Kvaerno & Stolte,
2012).

Modern technologies like satellite observations are becoming more and more accessible for scientific
purposes. Satellites monitor the earth constantly and mostly at fairly high resolutions, providing
previously unparalleled spatiotemporal coverage of soil and crop characteristics. The Sentinel-1
satellite has been used for soil moisture mapping at lower resolutions (El Hajj et al., 2017 ). Recently,
research has suggested and successfully implemented higher resolution use of Sentinel-1 (Hornaek et
al., 2012 & Lozach et al., 2020). An ongoing research project in the Netherlands successfully applied
Sentinel-1 to create a soil moisture monitoring network in the eastern part of that country (Benninga
et al., 2018). This methodology could also possibly be used to create soil moisture maps for SEMs
such as LISEM.

Until now, both the hydraulic conductivity and initial soil moisture parameters of LISEM are often
estimated or sampled and interpolated, but this does not always result in accurate values (Rousseau
et al., 2012). Since the model can be used as a tool to model landscape runoff behaviour, accurate
values are crucial. Because erosion causes a lot of nuisance in South Limburg, accurate modelling can
help predict where sedimentation will occur (Schouten, Rang, & Huigen, 1985; Hollis, 1975;
Winteraeken & Spaan, 2010). This in turn can help to desigh measures to prevent or mitigate this.
Because LISEM is quite sensitive to both initial soil moisture content and hydraulic conductivity,
improvement of input data for initial soil moisture content consequently could improve model
output (Sheikh et al.,2010). At the moment, no research has been done into the effects of improved
initial soil moisture content and hydraulic conductivity spatial values on model output. This research
aimed to investigate whether the accuracy of initial soil moisture content and hydraulic conductivity
values can be improved and if this leads to an improvement in LISEM output accuracy. The main
guestion of this research was therefore formulated as: to what extend can different ways of data
collection for initial soil moisture content and hydraulic conductivity help improve LISEM infiltration



maps accuracy and consequently LISEM output? The first sub question that was answered is: to what
extend can existing soil moisture sensors and manual sampling provide a reference to create
accurate satellite obtained soil moisture maps? The second question will be: to what extend can
satellite obtained soil moisture values produce significant improvement to model output? Finally, the
research will focus on to what extend manually obtained hydraulic conductivity maps can produce
significant improvement to model output?

2.Study area

The study area is located in the Limburg, the southern part of the Netherlands, see figure 1.
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Figure 1: Location of research area in the Netherlands (top left), land use (left) and digital elevation model with stream
network (right)

The coordinates of the study area are 50.93°N and 5.78°E. The climate in this part of the Netherlands
features mean daily temperatures ranging from three degrees during winter to roughly twenty
degrees during summer. The yearly precipitation is around 750mm with the wettest months being
June, July and August with a precipitation of around 75 mm per month (KNMI, 2020). The type of
rainfall also differs throughout the year. During winter and spring almost all showers are relatively
longer and less intensive. Especially during summer, but also sometimes in autumn, showers tend to
be shorter and more intensive, producing more runoff.

The soil in the catchment is, like the rest of southern Limburg, loess soil. This soil type has a grain size
of around 50-60um (Heinen, Bakker, & Wdsten, 2018). The land use in the catchment is
predominantly agricultural. As can be seen in figure 1, the two largest fields are agricultural fields. In
2019, the main agricultural field was planted with potatoes. During autumn and winter, the northern
agricultural field was covered in yellow mustard. When potatoes are grown on the fields, ridges are
made parallel to the contour lines (in figure 1 that means ridges with a west-northwest direction).
Some ridges at the western part of the main agricultural field are perpendicular to the contour lines.
There are two apple orchards which are permanent considering this study’s time frame. Between the
apple trees are grass strips. Furthermore, there are some plots of grass in the catchment.
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3. Background

3.1 - Sentinel 1

The Sentinel 1 satellite that was used for this research is part of the ESA’s Copernicus Programme. It
collects ‘C-band synthetic aperture radar (SAR) imagery at a variety of polarizations and resolutions’
(Google, 2020). With this, Sentinel is part is part of the active remote sensing, meaning it sends a
signal of its own rather than using for example radiation from the sun as basis of observations. This
has some advantages and disadvantages. One of the advantages is that microwave SAR imagery can
penetrate through not too thick cloud layers and vegetation. Another advantage that obviously
comes with all active remote sensing is that it is also possible to take images at night. There are also
some disadvantages, starting with interpretation of data. (Pre)processing of data is required since
the raw data collected in this way are harder to interpret than optical (passive) remote sensing data.
Another disadvantage is the occurrence of speckle effects in the image. When using satellite imagery,
it is important to determine and realize some key parameters of the satellite observations:
wavelength, polarization and incidence angle.

3.1.1 — Wavelength

The wavelength of a signal depends of its frequency. A higher frequency means a shorter wavelength
and less capability to radiate through materials and vice versa. Lower frequency (and therefore
longer wavelength) bands are therefore used in for example ground penetrating radar because of
their capabilities to penetrate through materials.

As mentioned before, Sentinel 1 collects C-band data. A band actually is a range of certain
frequencies that can be used for certain purposes. As can be seen in table 1, different frequencies
can be used for different applications.

Table 1: Overview of satellite bands, according frequencies and application examples. Edited from: (Podest, 2017)

L-band 1-2GHz Agriculture, forestry, deeper soil moisture
C-band 4-8GH:z Agriculture, surface soil moisture

X-band 8-12GHz Agriculture and high resolution radar
Ku-band 14 -18 GHz Glaciology and snow cover mapping
Ka-band 27 -47 GHz High resolution radars

3.1.2 — Polarization

There are four polarizations within the Sentinel 1 satellite: horizontal transmit, horizontal receive
(HH), horizontal transmit, vertical receive (HV), vertical transmit, horizontal receive (VH) and vertical
transmit, vertical receive (VV). For this study, the VV polarization was used. It is not within the scope
of this study to explain and elaborate on the choice in technical terms. The VV polarization was
chosen because it is the most used over land and is more sensitive to soil moisture than VH
(Benninga & Pezij, 2019).

3.1.3 — Incidence angle and backscatter

The incidence angle is the angle between the surface on which the radar illuminates and the
direction of the illumination beam. The angle will slightly change based on the height of the sensor
(satellite) and the orbit of the sensor. The backscatter of the radar contains information about the
surface which it illuminates. Calm open water and paved highways for example cause a low
backscatter because of their dielectric properties — they are good reflectors. In SAR images it is



therefore displayed as a darker colour. Built-up areas, rough surfaces and vegetation cause a higher
backscatter, as can be seen in figure 2 and are therefore displayed as more bright (white) areas on
the SAR images. In figure 2a, the surface reflects the signal without backscatter (think of water or
concrete). Figure 2b shows what happens on a rough surface, the reflection is in multiple directions
and only part is reflected back to the emitter. More or less the same happens in figure 2c. These
figures are examples of build-up area and vegetation respectively.
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Figure 2: Backscatter mechanisms. Source: Chang (2016)

3.2 —The Limburg Soil Erosion Model (LISEM)

As mentioned before, LISEM is a SEM. More specific it is a physically based model which is capable of
simulating rainfall events and the erosion and runoff that they cause. LISEM works event-based and
is not designed to model long-term impact. As can be seen in figure 3, part of the main loop of LISEM
is calculating infiltration through calculating precipitation and interception first. The infiltration
component of LISEM is based on soil properties, roads and buildings. The soil properties consist of
hydraulic conductivity (Ksat), porosity (theta-s) and initial soil moisture content (theta-1) (Jetten,
2018).

3.2.1 — Hydraulic conductivity

The hydraulic conductivity (Ksat) of a soil had a unit of distance/time (e.g. mm/hour). It refers to the
soil property of how much water can infiltrate in the soil in a certain time in saturated condition. The
higher the hydraulic conductivity, the higher the potential flow through the soil and the more water
can infiltrate into the soil during a rain storm. Soil with a higher hydraulic conductivity are for
example sandy soils. Lower hydraulic conductivity is found in soils that have smaller grain sizes, such
as loess and clayish soils.

3.2.2 — Porosity

The porosity (theta-s) is defined as the amount of space in a soil that is available to store water. For
example, a porosity of 0.5 means that 50% of the soils’ volume is available for water storage. The soil
cannot store more water than the porosity. Therefore, if the porosity value is reached, water will no
longer be able to infiltrate and start producing runoff.
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Figure 3: Overview of LISEM workflow, source: Jetten, 2018, p.71

3.2.3 —Initial soil moisture content

The initial soil moisture content (theta-i) is the amount of water in the soil as a fraction between 0
and the porosity. Initial soil moisture can never exceed the porosity and needs to be seen in relation
to the porosity. For example, a soil moisture content of 0.3 is not necessarily a small number when
the porosity is 0.35. LISEM defines initial soil moisture content as the soil moisture content just prior
to a rain shower. The fraction of water that can be stored in the soil is the difference between
porosity and initial soil moisture content. Therefore, if the initial soil moisture content is higher, less
water of a rain shower is able to infiltrate the soil and more run off. The other way around, lower soil
moisture content allows more water to infiltrate and less to runoff.

LISEM works by calculating net precipitation, which is defined as total precipitation minus
interception. The second step for the model is calculation of the infiltration rate. This is based on the
Darcy relationship equation (Jetten, 2018). The model calculates infiltration using equation 1, which
is based on the Green and Ampt method for infiltration.

Equation 1 q = —Ksat (dT_h + 1)

In which Ksat is the saturated hydraulic conductivity in m/s, L is the depth of the wetting front, h
the suction at wetting front and d the overpressure depth of the water at soil surface (Baartman et
al., 2013). The Green and Ampt method for infiltration is based on the assumption that a wetting
front moves downward into the soil parallel to the surface of that soil (Jetten, 2018).

If the Ksat or theta-I values ceteris paribus change, this will lead to another model output in terms of
runoff.



3.3 —Time domain reflectometry

Time domain reflectometry (TDR) can be used as an indirect measurement of the soil water content
in a soil. It is based on the idea that electromagnetic current travels through a medium —in this case
partially wetted soil — with a certain speed. An electromagnetic signal is send between two probes,
which are inserted into the ground. The travel time of the signal between these probes can then be
calculated using equation 2:

Equation 2 t=-

In which t is the travel time in seconds, L the signal travel distance in meters and c a constant of 3 *
108 m/s (the speed of electric signal through a vacuum). The velocity of the signal can then be
calculated using equation 3:

. L
Equation 3 v=7

Where v is the speed in metres per second. The dielectric constant of the soil (D), which relates to
the soil moisture content, can then be calculated with equation 4:

o\ 2
Equation 4 D = (;)
3.4 — Accuracy versus precision

The aim of this research is to investigate whether the accuracy of theta-I values can be improved. It is
good to give a short description of the concept of accuracy and precision. One could ask why it is
important to be as accurate as possible, instead of being as precise as possible. Precision can be
described as a way to describe how repeatable a measurement is. A measuring instrument with high
precision will give results that are close to each other. This can be compared to shooting arrows at a
target, if all arrows hit close to each other, the precision is high. This does not say much of how close
the arrows are to the centre of the target however. So, precision is not concerned with how close to
the ‘target’ the measurements are. In other words, measurements that are very precise don’t
actually have to be close to the true value, the ‘target’.

Accuracy on the other hand is a way of indicating how close a value is to the true value. In the
example of arrows, it indicates how close to the middle of the target the arrows are. Achieving a high
accuracy means that you are close to the real world (‘correct’) value with your measurements. In this
research, the accuracy of data is more important than the precision, because the theta-I values that
will be obtained will lead to other model outputs. If they are close to reality (that is, have a high
accuracy), model accuracy might also improve.

Accuracy can be difficult to measure. In this research, existing soil moisture sensors will be used
which are already calibrated. They can serve as a reliable reference for measurement data from for
example the satellite. The data from the sensors can be seen as accurate, so the satellite data should
be coming close to these values in order to be accurate.



4 Methods

This chapter provides an overview of all methodology that was used to obtain the results. The first
two sections describe the fieldwork that was done and the data that was obtained from Sentinel.
Section three details the statistical methods that were used to compare Sentinel and in situ
measurements. Sections four to six describe the steps that were taken to model the catchment in
LISEM. Lastly, sections seven and eight describe the rainfall events that were used and how they
were used to generate LISEM output.

4.1 — Collection of soil moisture data

Soil moisture data were collected using three sources: soil moisture sensors in the soil, Sentinel-
based soil moisture maps and manual TDR measurements. The first source, soil moisture sensors,
existed of two Campbell CS616 soil moisture sensors at location one and two in figure 4. These
sensors were already present due to an ongoing research project and were used to obtain soil
moisture data at two depths — 5 and 20 cm. The data from these sensors was saved to a local
computer and at were manually transferred to a laptop computer when the locations were visited.

The Sentinel 1 satellite data was used to determine soil moisture levels within the study area. This
satellite passes over the catchment roughly once every three days, giving a good temporal frequency.
Researchers of the programme Optimizing Water Availability with Sentinel-1 Satellites (OWAS1A)
developed an algorithm in which data from the Sentinel-1 satellite can be converted to soil moisture
maps using the Google Earth Engine. The base script of this algorithm was obtained from the
OWASIS project (Benninga, van der Velde, & Su, 2016). To be able to calculate the soil moisture
value, the soil moisture at wilting point and saturation needed to be incorporated. These data is
available for the Netherlands in the form of the Bodemfysische Eenheidskaart 2012 (BOFEK2012),
which is based on the Staringreeks (Heinen, Bakker, & Wosten, 2018). Values for soil moisture at
wilting point and saturation were obtained from BOFEK2012 (Wosten, Veerman & Stolte, 1994;
Wosten et al., 2013). The script that was used can be found in annex 1.

The Sentinel-1 series of soil moisture
measurements were converted into
graphs for comparison with the
Campbell sensor soil moisture series
and the manual sampling series. This
was done by defining two small areas
within the total catchment, one around
the location of the northern Campbell
sensor (sensor 2) and one around the
location of the southern one (sensor 1),
see figure 4. For each of these areas,
the graph of soil moisture was plotted
and compared to the actual Campbell
sensor measurements.

Next to these soil moisture sensors and
satellite observations, manual sampling
was conducted to establish the soil

320 Meters

moisture content in the soil at a certain  Figure 4: Areas around the two Campbell sensors (red) that were used
day. There are various methods to do for Sentinel soil moisture collection. The southern area is location 1, the

. . northern area is location 2.
this, such as hand sampling and



determining the amount of water in the soil by weighing and drying the soil. The latter takes a lot of
time and is not very efficient. Another way to measure this is by using TRD. This is a relatively non-
labour intensive and accurate way to measure soil water content. The HD2 Mobile Moisture Meter
from Van Walt was used to perform this part of the fieldwork.

The soil moisture meters provide a reference soil moisture map to the satellite measured soil
moisture data. Three fieldwork campaigns were
conducted on October 2"* and November 5% ,2019
and March 20™, 2020. The goal was to obtain a soil
moisture map on the date of measurement for
comparison and evaluation to the data measured
by the satellite on the same day. The layout of the
November fieldwork can be seen in figure 5. On
each sampling point, four subpoints were created in
a 10 meter box around the sample location (see
annex 2 for more details). The average of all
measurements at one location was taken as the soil

egend
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. - Tree nursery
The fruit orchards features two types of land use B it orchard
and according soil moisture and Ksat [ Grassland
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between the rows on the grass. These two were I Buiid-up area
distinguished because they likely have very B Road

different characteristics in terms of saturated
conductivity and soil moisture. So for each location
within this orchard one sample was taken

withing the tree rows and one in between the

tree rows. At the moment of sampling, the apple
trees were being harvested.

Figure 5: Sampling lay-out November fieldwork

The March fieldwork featured a slightly different
approach. Twenty-three sampling points were
selected, per point three measurements were
taken. Again, points in the fruit orchard were
sampled twice — once in between the trees and
once in between the rows. An overview of the egend
sampling points used in the March fieldwork can
be seen in figure 6.
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- Grassland
- Woodland
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Figure 6: Sampling lay-out March fieldwork
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4.2 — Collection and calculation of saturated hydraulic conductivity data

The Ksat measurements were done along the lines of the steps mentioned in the Manual for soil
physical measurements. For each
measurement, two anchor rods

Anchor beam

Spirit level |

. . . Pum 2]
were drilled into the soil, an e (ﬂ - J il S
. v e ey } *Lock nuts
horizontal rod was placed between i M e
. — Tt T H draulic jack
them, secured with bolts to prevent & ST ‘ sy g | F
movement. The sample ring was s { J % L*
. . . . . 4 ‘ o TS| —
equipped with an iron cutting ring ‘ ‘,\_‘m prosmm y
to ensure smoother passing into T lsaz-4 ,..‘.‘E:“"/ L | .
the soil, see figure 7. A hydraulic (| ‘ ey |
. N { =) i) t\ <— Anchor rod
pump was then used to drill the al) \ al)
X X . X . . ¢ Cutting edge \ ’1:
ring into the soil with minimal soil v 23\ V
Sample ring

disturbance (Stolte, 1997). One AUlCy egpe. Jing the SevorpRe RS
difference to figure 7 is that these )
Ksat samples were taken from the

topsoil, not the subsoil. After the

Ksat samples were taken, they were numbered, rolled in plastic and stored in a cool room to be
analysed.

Figure 7: Hydraulic conductivity measurement method. Source: Stolte, 1997,
page 14

Analysis of the Ksat samples was done using the
Standaardwerkvoorschrift bepaling van de verzadigde
waterdoorlatendheid, which is based on the NEN5789
protocol. The samples were carefully trimmed so that they
exactly matched the top and bottom extend of the ring. They
were then placed in a layer of a few centimetres of water to
slowly start infiltration. After a week they were put in the
measurement setup. Once the whole sample was saturated
and a small layer of water appeared on top of the sample, a
column of approximately ten centimetres of water was put
on top of the sample and twenty-four hours later, the
measurement of hydraulic conductivity was carried out, an
example of the setup used can be seen in figure 8. For each
sample, three measurements of Ksat were taken with each
measurement lasting at least ten minutes and collecting at
least 100 millilitres of water, in accordance with the
aforementioned protocol.

Figure 8: Measurement setup during
The Ksat values were calculated according to the equations 5 measurements of Ksat samples

and 6:

- v
Equation 5 Ksat = YTy
In which in equation 6 |AH| = w”—zout andq = AzA

In which V is the volume of water that was collected in At time, L the height of the sample and A the
area of the sample.



4.3 — Comparison of Sentinel and measured data

The Google Earth engine was used to create a graph of average VWC in the total catchment and in
the locations of the Campbell sensors during the year 2019. The VWC values measured with these
sensors were averaged per day and put in a graph as well. Direct comparison of these graphs was
difficult, so a statistical approach was used to determine the correlation r between the Sentinel daily
averages on locations of the Campbell sensors and the daily averages measures by these sensors.
This was done by calculating the Pearson correlation coefficient r with equation 7:

Equation7 7= L(m—fs(x))*ﬂy—fs(y)))

n-1 Sx*Sy
in which E(x), E(y) are the average values of the x and y variable, n is the number of data points that x
and y share and s(x), s(y) are the standard deviations of the variables. The standard deviations s were

calculated using equation 8:

2
Equation 8 s= /W

in which E(x) is the average value of the x variable and n is the number of values over which the
standard deviation is calculated.

Another way that the Sentinel data were compared to the data measured with the Campbell sensors
is by using the RMSE. The Sentinel based values were determined ‘model’ outputs, the Campbell
sensor data the ‘observed’ date. Equation 9 was used:

n

Equation 9 RMSE = \/Z(xmodeled_xobserued)'\z

In which n is the number of observation pairs and, x;,,4e1eq are the Sentinel SWC values and
Xobserved are the Campbell sensor SWX values.

The third way that the Sentinel and soil moisture sensor data were compared was by using the Nash
Sutcliffe coefficient (NSE). The NSE was calculated using equation 10:

NSE = 1 — 2t=1(06-0m)"2

Equation 10 om
quation YT, (05—00)"2

In which Qf are the observed values — in this case the VWC values observed with the soil moisture
sensors — Q% are the modelled values — in this case the VWC measured with Sentinel.

4.4 — Data processing and setting up LISEM

Preparation of data for LISEM was done using the Nutshell software — which is a Windows shell for
PCraster, the input map type that is required for LISEM. A PCraster script was used to create all
needed maps for LISEM to run. This script can be found in annex 3.
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The soil moisture maps that Sentinel
provides are ten meter resolution and
cover the whole catchment. In LISEM,
one soil moisture per field was assigned.
Therefore, the Sentinel picture needed
to be broken down into field-size parts.
This was done with the Arcmap software
and is visualised in figure 9.

Every field was made into a separate
feature. A Sentinel image was then used
out of which all fields were clipped. The
result being Sentinel images per field in
the catchment. These individual files were used to find the average soil moisture value, which were
then used as input for LISEM. Table 2 provides an example of all data that were used per field of the
study area. In the different runs and scenario’s, values of this table were adjusted. A short
explanation of each of the parameters will be given now.

Figure 92: Out of the Sentinel images, smaller portions the size of individual
fields were cut

Land use: see table 2 for land use corresponding to the field numbers. Numbers 90, 91 and 100 are
roads or build-up area.

Random roughness, Manning’s N, LAl and PSI were chosen based on appendix A and B of the LISEM
manual, which provides values for these variables based on their land use (Jetten, 2018).

Porosity: the soil samples that were used to determine Ksat were afterwards used to determine
porosity. They were weighed when completely saturated, then dried in an 105 degrees Celsius oven
for 72 hours and weighed again. To determine porosity, equation 11 was used for this:

Wiyer—W
Equation 11 ~ Porosity = %dry * 100

In which W,,,¢; is the wet weight, W, the dry weight, both in kg, and V the volume in m3. This was
done for ten samples. The average porosity was calculated to be 44.5. This value was used for the
entire catchment.

Hydraulic conductivity: the calculated Ksat based on samples was averaged per field, outliers were
excluded. To see whether measured values provide results closer to observed in the catchment, Ksat
values for LISEM run without measured Ksat values were taken from appendix A of the LISEM
manual.

Initial soil moisture content this value changes depending on the day the model was run at. This field
was used in two ways. Either it contains the average Sentinel-1 value of soil moisture for a field on a
certain day or it contains the average sampled value per field for a certain day.

Soil depth was set to ten centimetres for the whole catchment. It influences the infiltration potential,
as deeper soils can retain more water than shallower soils. The value of ten centimetres is a rough
estimation. Soil in Limburg are deeper but deeper soil do not have a significant impact on the runoff
of LISEM.
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Table 2: Example of table that was used as LISEM input

Q‘F @ ,c;tg“z
D@@ @ i}oq %@ﬁ @D\
“ 52 = o & S ey

5 & & & L@ a2 o N \‘nc' g .

» 8 &S S «235\& S & N NP bﬁ?
AR LRV VAR I VAR IR IESVE R T TEATE.
1|Cropland 1| 0.03 0 15 15 40( 40.8 15] 0.45] 0.15] 100 1 1.7) 0.4 0
2|Cropland 0 0 0 15 15 40| 40.8 15 0.45) 0.27) 100 1 1.7 0.4 0
3|Grassland 0.5 0.1 0 15 15 401 124 15) 0.45) 0.28] 100 1 B 0.2 0
A(Fruit orchard 1 0.1 0 15 15 40( 828 15] 0.45] 0.29) 100 1 1 3 0
5|Cropland 1] 0.4 0 15 15 40| 40.8 15 0.4%5) 0.16) 100 1] 1.7 0.4 0
6|Cropland 1 0.1 0 15 15 40( 40.8 15) 0.45] 0.26| 100 1 1.7] 0.4 0
7|Cropland 1 0.1 0 15 15 40( 40.8 15] 0.45) 0.29) 100 1 1.7] 0.4 0
8|Cropland 1| 0.03 0 15 15 40( 40.8 15) 0.45) 0.36| 100 1 1.7] 0.4 0
9| Grassland 1| 0.03 0 15 15 401 124 15] 0.45) 0.27] 100 1 1.7) 0.4 0
10|Grassland 0.5 04 0 15 15 40| 124 15 0.45) 0.3 100 1 6 0.2 0
11|Tree nursery 1 0.1 0 15 15 40( 828 15) 0.45) 0.28] 100 1 1 3 0
12|Grassland 0.5 0.1 0 15 15 401 124 15) 0.45) 0.32| 100 1 b 0.2 0
13|Grassland 0.5 04 0 15 15 40| 124 15 0.4%5) 0.35) 100 1 6 0.2 0
60| Woodland 1 0.1 0 15 15 401 124 15) 0.45) 0.25] 100 1 B 0.2 0
60|Woodland 1 0.1 0 15 15 401 124 15 0.45 0.3 100 1 b 0.2 0
70|Grassland 0.5 0.1 0 15 15 401 124 15) 0.45) 0.2%) 100 1 6 0.2 0
70|Grassland 0.5 0.1 0 15 15 401 124 15] 0.45] 0.23] 100 1 b 0.2 0
90|Road 0 0 0 15 15 40 0 15| 0.45 0 0 1 0 0 0
91|Road 0 0 0 15 15 40 0 15| 0.45% 0 0 1 0 0 0
100|Build-up ares 1| 0.01 0 15 15 40| 1000 15 0.45 0| 100 1 0 0 0
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4.5 — Modelling ridges

The objective of a model is to resemble the
real word as accurately as possible.
Complete accuracy is really difficult and
hard to achieve in a study like this since
there are endless ways to make a model
more accurate. The opposite of this is a
model that is too simple and overlooks
major aspects of the process or catchment.
An important feature that influences runoff
a lot is the presence of potato ridges during
growing season on the main agricultural
field.

LISEM makes use of DEM. The DEM that
was used in LISEM — as well as all other
data — had a resolution of 5 metres. Each
cell within the DEM contains a value for its
height above sea level. A way to build
barriers is to build them into the DEM. This
was done by creating features in Arcmap
with the same direction as ridges, a z-value
of 0.3 was assigned to each feature.

egend

[ Ridges (0.3m)
Landuse

- Agriculture
- Tree nursery
- Fruit orchard
- Grassland
- Woodland
I suild-up area
- Road

0 90 180 360 Meters

Figure 10: Modelled ridges

Observations in the Catsop catchment shows ridges following contour lines on the western part of
field number 2. These ridges rapidly guide the water down to the outlet. To model this in LISEM, one
ridge was added in the same direction and with the same function as these ridges. A complete
overview of the ridges can be seen in figure 10.

All area that was no ridge was given value 0. This file was converted to ASCII file format. Nutshell was
used to convert the ASCII to a .map file and add the z-value of the features to the DEM. This was

done using the following two commands:

asc2map — a barriers.asc barriers.map — —clone clone. map

pcrcalc dem2.map = dem.map + barriers. map

This results in a DEM in which the ridges are
modelled with cells that are 0.3 meters
higher than the surrounding area. The
resulting a non-edited DEM and a DEM with
barriers can be seen in figure 11. This is a
solution that allows modelling of ridges,
however it is far from an ideal solution.
Since the cell size of the DEM is five meters,
the modelled ridges are immense (5 by 5 by
0.3 meters) compared to ridges one would
see in a field. These modelled ridges do have
a similar effect as normal ridges, namely to
act as water barriers. The LISEM run with

DEM with barriers modelled Unedited DEM

Figure 41: Normal DEM and modified DEM to simulate potato
ridges
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barriers provides flow patterns that look more close to observed patterns than the LISEM run
without barriers.

4.6 — Selection of rainfall events

Three of these rainstorms for which LISEM runs were done were selected. The rainfall data itself
were obtained from ongoing, unpublished, research in the Catsop area. The nature of the required
storms has been discussed earlier: they need to be relatively short and relatively intensive so that
they actually produce measurable runoff. Another criterium that was taken into account is the
availability of soil moisture data on or around the date of the storm. Table 3 lists the three storms
that were selected based on this criterium.

Table 3: Selected rain storms and their characteristics

March 15, 24.2 28.8 4:00 140
2019

May 28, 5.4 19.2 1:08 284
2019

September 4.2 33.6 0:31 104
29, 2019

4.7 — Rainfall and runoff selection, calculations and comparisons

A summary of the workflow to get LISEM working for the three rainfall events can be seen in figure
13. For all three rainstorms, the same data on cohesion, aggregate stability etc. were used. The
hydraulic conductivity map from figure 23 (see chapter 6) was used for the first run, the literature
based hydraulic conductivity values (see section 5.6) were used during the second run. Individual soil
moisture maps were created for each of the three rain storms, these maps are displayed in figure 24
(chapter 6). Unique rainfall files, that can be found in annex 4 were used for each rain shower. The
LISEM model was then calibrated to match the recorded runoff of the rain storm as measured by the
water board. The two parameters in LISEM that were used to calibrate were the multiplication factor
Ksat slopes and multiplication factor Manning N slopes. The discharge LISEM using the measured
hydraulic conductivity values and the theory-based hydraulic conductivity values were combined in
graphs with the discharge measured by the water board, see figure 25 (chapter 6).

14



gikn

650

Sentinel average soil Rargfal!l;m LISEM
moisture per field March 1 Calibration runoff
on March 15t 0 : 0 result
Unaltered LISEM Hydraulic
data for: conductivity map _@_
Cohesion from manual Sentinel average soil
Aggregate stability sampling (run 1) ; , Rainfall . LISEM
Grain size mOIStL:\;E pz;r8 1:|.eld 25t Calibration runoff
Soil depth Literature-based on May result
Manning’s N hydraulic O o
Roads & buildings conductivity value
Surface roughness (rum 2J.
Sentinel average soil .
moisture per field SeR:'tnf;glL Calibration
on Sept. 29t

Figure 53: Schematic of LISEM data workflow for the three selected rain showers

4.8 — Calibration

OpenLisem offers a few calibration parameters, of which the Ksat and Manning’s N are the most
sensitive (De Roo & Jetten, 1999; De Roo, Offermans & Cremers, 1996). The main focus of the
calibration was to match the peak discharge and the speed at which the outflow decreases after the
peak discharge.
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5 Results

5.1 —Soil moisture data from fieldwork, Sentinel and Campbell sensors

Soil moisture data from three sources is available. Both the Sentinel and Campbell sensors can
provide continuous information. The soil sampling provides data on a few specific dates. The average
soil moisture data in the area as captured by the Sentinel-1 satellite during the year 2019 is shown in
figure 15. In figures 16 and 17 the mean soil moisture values in the areas surrounding the Campbell
sensors is plotted for the year 2019. As can be seen from figure 14 and 15, the VWC is quite high
throughout the whole year, but is lower during the start of the growing season (April —June).

Sentinel average VWC Catsop in 2019
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Figure 64: Sentinel average VWC Catsop 2019
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Figure 15: Sentinel average VWC at location 1 in 2019
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Sentinel average VWC location 2 2019
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Figure 16: Sentinel average VWC location 2 in 2019

Based on the automatic observations of the Campbell sensors it is also possible to plot a graph of the
measured SWC during 2019, see figure 17 and 19. These graphs show the daily average soil moisture
at 5 and 20 cm depth. The data are averages per day and days or periods with no data were
removed.

Campbell sensor SWC at location 1 during 2019
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Figure 17: Campbell sensor SWC at location 1 in 2019

When data from the Campbell sensors at locations 1 and the Sentinel averages for location 1 and 2
are combined, the result can be displayed in figure 18 and 20. These are again daily averages. As can
be seen in figure 17, location one has little days where both Sentinel and Campbell contain
measurements. Both Campbell and Sentinel seem to follow the same trend. In figure 20 some larger
differences between Sentinel and Campbell can be seen, especially as the growing season
progresses.
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Sentinel and Campbell sensor SWC data

0.4

0.35

D

\

W

o
w

0.25

©
N}

0.15

Soil moisture content (m3/m3)

0.1

0.05

19-feb 10-mrt 30-mrt

—@—SENT_LOC1

"1,
TV

19-apr

Campbell_LOC1 5cm

9-mei 29-mei 18-jun 8-jul 28-jul

Months

Campbell_LOC1 20cm

Figure 18: Combined Sentinel and Campbell SWC at location 1

SWC at location 2 during 2019
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Sentinel and Campbell data at location 2
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Figure 20: Combined Sentinel and Campbell SWC at location 2

Based on these graphs the correlation r and r? between Sentinel and Campbell sensors were
calculated. The Sentinel data of location 1 were coupled to the 5cm and 20cm Campbell sensor data
of location 1. The same was done for location 2. The results can be seen in figure 21.
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Figure 7: Correlation of VWC between Sentinel and Campbell sensors at Location 1 (upper graphs) and location 2 (lower
graphs). Outliers not yet excluded.

From these results it is clear that no relationship can be found between the location 2 Sentinel and
Campbell sensors data. Both r = 0.04 and r = 0.2449 are low values indicating no significant
relationship between the two. The Sentinel images of location 1 and the values of the Campbell
sensors seem to better correlate with r values of 0.86 and 0.85 for 5 and 20 cm Campbell sensors
respectively.

Using the Sentinel data as modelled output and the soil sensor measurements as observed output, it
is possible to calculate the Nash Sutcliffe coefficient. In table 4, the NSE for Sentinel 1 data compared
to in-field soil moisture measurements can be seen.

Table 4: Nash Sutcliffe coefficient and RMSE for Sentinel and observed soil moisture data

Observed data Campbell locl1 5cm  Campbell locl Campbell loc2 Campbell loc2
20cm 5cm 20cm

NSE 0.89 0.85 -0.16 0.21

RMSE 0.04 0.05 0.14 0.13

These results indicate a moderately good match between the Sentinel and observed data at location
1. The negative values for location two indicate that Sentinel data is not as good as observed data.

In order to compare the satellite imagery with measured values, another possibility is to look at the
fieldwork soil moisture values per field and compare them to the Sentinel average values for the
same field on the same day. Unfortunately, there are no Sentinel data on the exact dates of fieldwork
since not every day or even every pass-by of Sentinel produces a usable image. table 5 gives an
overview of the available Sentinel data and precipitation around the fieldwork data (the thick-boxed
dates)
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Table 5: Rainfall and Sentinel data availability. Source: KNMI, station Beek

OCTOBER FIELDWORK

1-10-19 7.2 NO
2-10-19 19.3 YES
3-10-19 7.2 NO
NOVEMBER FIELDWORK

4-11-19 2.8 NO
5-11-19 3.3 NO
6-11-19 3.4 NO
7-11-19 1.2 YES
8-11-19 2.1 NO
MARCH FIELDWORK

28-02-20 13.90 NO
29-02-20 3.90 NO
1-03-20 2.70  YES
2-03-20 2.50 NO
3-03-20 7.90  NO
4-03-20 0.40 NO
5-03-20 1.30 NO
6-03-20 16.40 NO
7-03-20 4.00 YES

*Source: KNMI, station Beek

As mentioned before, the Sentinel passes over the study area every three days. The only direct
match with a fieldwork date is October 2", 2019. The large amount of time between satellite passing
and fieldwork, and the rain that fell in that time makes comparing the collected soil moisture data
from the November and March fieldwork impossible. Table 6 gives the comparison between the
Sentinel and measured SWC values in October, November and March.

Table 6: Comparison between measured and Sentinel soil moisture content

1 Cropland 34 29 41 21 32 38
2 Cropland 32 36 36 17 32 35
3 Grassland 40 25 29 21 32 50
4 | Fruit orchard 33 29 26 25 36 39
5 Cropland 31 31 31 18 34 35
6 Cropland 31 37 37 20 32 N/A
7 Cropland 31 34 25 22 31 32
8 Cropland 35 31 33 22 31 N/A
9 Grassland 35 28 32 26 35 N/A
10 | Grassland 40 31 25 25 31 61
11 Tree nursery 33 28 31 25 32 N/A
12  Grasland 40 25 24 24 33 N/A
13 Grassland 40 31 29 24 31 N/A
60 Woodland 40 25 20 24 34 N/A
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60 Woodland 40 28 30 24 38 N/A

70 Grassland 40 33 30 24 39 N/A

70 Grassland 40 32 33 24 31 N/A
*FW means fieldwork data, SENT means Sentinel data

Since there are several days with precipitation between the November and March fieldwork and
Sentinel passes, the only date on which Sentinel soil moisture values can be compared to sampled
values is October 2", 2019. The result of this comparison can be seen in figure 22.

Sentinel average per field soil moisture Sampled average per field soil moisture
content October 2nd, 2019 content October 2nd, 2019
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Figure 22: Comparison of average soil moisture per field from manual sampling and Sentinel

5.2 —Soil moisture and hydraulic conductivity maps

5.2.1 — Literature-based hydraulic conductivity values

One of the goals of this paper is to compare measured hydraulic conductivity to values of that same
variable that would otherwise be obtained from other sources. In other words: what would a
literature-based hydraulic conductivity value for this catchment be and does it produce different
results compared to the measured values.

Since hydraulic conductivity depends on the type of soil, the first step is to find the soil type in the
catchment. Using the Bodemfysische Eenheidskaart from 2012, the soil type in the catchment was
defined as silty loam (Wosten, et al., 2013). In the Staringreeks, this is called soil type B14 (silty loam)
with a hydraulic conductivity value of 0.9 cm/day (fitted, not measured). However, from all the B14
sampling locations in this Staringreeks, there is a large difference in hydraulic conductivity ranging
between 0.02 to 99 cm/day. Even on sampled locations that are labelled with the same coordinates,
large differences in hydraulic conductivity occur (Heinen, Bakker, & Wd&sten, 2018). Other research
found hydraulic conductivity values for the B14 soil type to be 34.5 and 133.5 cm/day. The locations
of measurements | this research are — unfortunately — not documented. (Bakker, Heinen, de Groot,
Assinck, & Hummelink, 2018). The problem of hydraulic conductivity values being not well
documented is already described in older studies as well, these studies established a hydraulic
conductivity of Imm/hour for farmland and 3mm/h grasslands (Smith, Goodrich, & Unkrich, 1999; De
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Roo & Jetten, 1999). Since this last study was in the same catchment and the values of 1 and 3mm
respectively fall within mentioned values of the Staringreeks and Bodemfysische Eenheidskaart,
these values were used for the Catsop catchment for comparison against the measured hydraulic
conductivity.

5.2.2 — Hydraulic conductivity based on sampling

Based on the Ksat measurements, a o o A
map for the Ksat per field (averaged \_
when more than one sample per N ™ .
field was taken) was made, see
figure 23. As can be seen, the
highest values were found in the
fruit orchard and grass fields. The
lower values were found on land
used for agriculture. The black piece
of land is a farm that has a paved
compound
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Figure 8: Hydraulic conductivity (mm/hour)

5.3—LISEM run results for three rain storms

As mentioned in the methods chapter, three rain storms were used for the LISEM modelling. For
each of these storms, a theta-l map based on Sentinel data was created containing average soil
moisture values per field on the day before the storm, the soil average soil moisture per field is
displayed as a percentage of the porosity (0.445). The resulting maps can be seen in figure 24 on the
next page.
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Figure 24: Average Volumetric Water Content obtained from Sentinel per field for the three selected rain showers
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The LISEM calibration settings and the Ksat ranges that were used for the three rainfall events can be
seen in table 7. The ranges for Ksat values are given, the exact values for manual sampled runs can
be found in figure 23. The literature based Ksat values can be found in section 5.2.1 The hydrographs
of the three rainfall events can be found in figure 25. The absolute values of Manning’s N were not
changed for each of the runs. They have a range between 0.001 for the agricultural fields and
grassland and 0.1 for the fruit orchard. Manning’s N for roads was set as low as possible.

Table 7: Comparison of LISEM settings for manual and literature based Ksat samples

Manually sampled Ksat values (run 1, for exact Ksat values)

Ksat range [min,max] (mm/h) [40.83, 828.2] [40.83, 828.2] [40.83, 828.2]

Ksat calibration factor (-) 0.04 0.01 0.03

Manning's N calibration factor (-) 0.50 0.01 0.01
Litarature based Ksat values (run 2)

Ksat range [min, max] (mm/h) [1, 3] [1, 3] [1, 3]

Ksat calibration factor (-) 1.60 0.40 1.20

Manning's N calibration factor (-) 0.50 0.01 0.01

As can be seen in figure 25, the LISEM runs mostly result in less total runoff than measured in the
field. For the showers in May and September using the literature Ksat values, it is possible to better
approximate observed values.

Measured and modelled runoff rainfall event 15th march 2019
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Measured and modelled runoff rainfall event 28th may 2019
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Measured and modelled runoff rainfall event 29th september 2019
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Figure 9: Comparison of hydrographs for three rainfall events
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6 Discussion

This research showed that it is possible to compare Sentinel and in situ measurements to achieve
relatively good statistical results in specific conditions. This corresponds to other research in the
Netherlands that was able to get good results in this way (Benninga, et al., 2018). The Ksat values
that were found show that local circumstances cause this value to change on a local scale, like other
research suggests as well (Mahapatra, et al., 2020; Shao & Baumgartl, 2014). Despite the results,
there are still points to improve and reflect on in future research. These will be elaborated on in the
continuation of this chapter.

6.1— Comparing in situ and Sentinel soil moisture measurements

The Sentinel-1 satellite provides soil moisture information in a relatively constant way. It provides
this info every three days in minimum. Sometimes images cannot be retrieved, limiting the usability
to once every six days. This is a high temporal scale compared to manual sampling, but cloudy
conditions contribute to the fact that the three day interval is not always achieved.

Sampling soil moisture with semi-permanent soil moisture sensors as was done with the Campbell
sensors has the potential to provide a good dataset against which the Sentinel-1 measurements can
be validated. Unfortunately, the performance of the Campbell sensors and Sentinel-1 over the course
of the study period was not optimal. This is due to a number of reasons:

- The Sentinel-1 satellite measures very high values of soil moisture in the months June to
September. The 2019 summer period was dryer than normal and featured a rainfall shortage
of 100mm in the end of June up to nearly 200mm in the study area on September 15%, as can
be seen in figure 26. This does not stroke with the Sentinel observations indicating a soil
moisture content of around 0.35 in the same period compared to an estimated porosity of
0.40-0.45. This effect could be due to vegetation influences on Sentinel. Other research
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reports Sentinel being sensitive to crops with a high canopy density and resulting in higher
VWC values (Vreugdenhil, et al., 2018);

- The Campbell sensors data contains large data gaps. Measurements done at the southern
location (location 1) for example only contained 22 days in the period February-August.

Since most rainfall events that produce erosion and significant runoff occur during the summer, it is
crucial that Sentinel soil moisture observations during the summer can be linked to in situ
measurements. That way, the satellite can be used to accurately estimate soil moisture content in
the catchment at any time. One could argue that the comparison done in this paper is too shallow:
why not compare Sentinel to in situ measurements for a year (including winter) or longer? This was
not possible due to the data of the Campbell sensors, which roughly cover 2019 and the first month
of 2020. Still, there is some data in the months November 2019 — January 2020 which could be used.
The outcome could be either positive (correlation between Campbell sensors and Sentinel-1 is found)
or negative (no correlation found). In the first case, that would mean that Sentinel observations done
during the winter months can accurately be used to predict soil moisture content. Its result would
and could not be that all Sentinel measurements throughout the whole year can be used, since the
data during growing season shows non-realistic patterns compared to measured data. The next step
would be to show the effect of vegetation during winter (think of cover crops) on the Sentinel
observations. As mentioned before, this vegetation effect on Sentinel 1 is not worked out yet. This is
something future research should aim to solve.

It is, however, possible to use SAR based satellites (of which Sentinel-1 is one) for monitoring of soil
moisture content. Studies conducted with the forerunners of Sentinel-1 have demonstrated this (van
der Velde, et al., 2012 & Kornelsen & Coulibaly, 2013). Studies done more recently using Sentinel
have also proven that Sentinel can be used. These studies also report the not yet solved problem of
vegetation during the growing season influencing the Sentinel measurements (Benninga & Pezij,
2019, Carranza et al., 2019, Alexakis et al., 2017 & Gruber et al., 2013).

Statistical tests as done in the results chapter are possible and provide insight into the correlation
between two datasets. It is important to realise that the weight of this is relative since the n is low,
either 15 for location 1 or 30 for location 2 over the span of half a year. A prime example of this is the
two outliers in the location 1 correlation data that turn out to influence the outcome of rand 2 a
lot. It could be that there seems no relationship now but in fact there is one or vice versa if the
number of data points increases. So the statistics do say something, but they don’t tell the whole
story. In order to do more robust statistical statements, more in situ measurement data is needed.
This could also be the reason that the NSE is quite high sometimes whilst other statistical parameters
indicate no correlation; maybe NSE is more or less vulnerable to a smaller n.

6.2 — High variability in Hydraulic conductivity measurements

Although sampling and measuring Ksat is well documented, it seems tricky to get consistent accuracy
in the values. This can be due to a number of reasons. The first reason is that — especially with wet
clayish soils — it is important to minimize stress on the soil after taking it from the field. Pressure on
the soil could lead to compaction and alter Ksat values of the soil. It is also important to accurately
prepare and measure the soil in the lab. Potatoes (that rot over time and when they do so leave large
‘gaps’ in the sample) and macropores in the soil can lead to higher Ksat values being measured. Both
of these phenomenon were encountered in multiple samples. This is in line with other research that
is suggesting the impact of vegetation and macropores on Ksat and its spatial variability is way larger
than the change that occurs by soil difference (Mahapatra, et al., 2020; Shao & Baumgartl, 2014).
Furthermore, there are multiple methods of measuring hydraulic conductivity, which also lead to
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different results. Because of time and resource limitations, the method in this paper was chosen.
Another method might be more accurate and less prone to large variations (Bakker, Heinen, de
Groot, Assinck, & Hummelink, 2018).

6.3 — Modelling reality? Calibration factors

Another point of concern is the working of LISEM as a model and its implementation by the
OpenLisem software. The software remains a work in progress, where consecutive versions will
produce roughly ten times much runoff for the same input. This of course has to be taken into
account. Another known issue with LISEM is that water is not flowing through the catchments as
quickly as it should. This problem is currently being addressed by the developer of the OpenLisem
software. This problem where the water is flowing slower than it should is likely to have a huge
impact on research related to hydraulic conductivity, like this one. When the water is flowing at a
slower speed, it has more time to infiltrate and therefore more water will infiltrate. The effect of
measuring hydraulic conductivity as was done in this research can be destroyed when the water
flows too slow and too much infiltrates.

Every model has the possibility to calibrate to get to the final result. So does LISEM. The results from
the three rainstorms indicate a certain degree to which the modelled and measured outcomes
compare. From the graphs it looks like the comparisons between the modelled and observed
discharge are not that far off. However, the calibration that was needed to obtain these results was
quite big. As can be seen in the results chapter, the two calibration ‘buttons’ used were the
Manning’s N and the Ksat multiplication factor.

The Manning’s N had to be set to unrealistic low values (order of magnitude 10™%) to obtain the
results for both the literature- and manually obtained Ksat values. The Manning’s N used is several
orders of magnitude smaller than the ones indicated in for example the LISEM manual (Jetten, 2018).
Since the Manning’s roughness is related to how fast water moves through the catchment, this is
likely the correction to the LISEM-related problem of water flowing too slow as described in 8.3.
Calibrating in this way it’s not entirely possible to solve the problem, because at a certain point the
Manning’s N values cannot be set lower because of model limitations.

The Ksat multiplication factor had to be set to a very small number to be able to accurately model
the discharge to match the recorded discharge from the water board. The values that were used for
the manually obtained hydraulic conductivity were not completely unrealistic but were rather low,
around 0.4 mm per hour, which is more or less on the low side with what several studies find for this
type of soil (Heinen, Bakker, & Wdsten, 2018; Wosten, Veerman, & Stolte, 1994). Note that other
values such as 20mm/hour are also values that occur in literature, there is large variation within the
values that are available. The Ksat values that were obtained from literature are still on the low side
for LISEM to get close to the measured output, which can be seen in the multiplication factor Ksat.
This factor needed to be set bigger than 1 when working with the literature Ksat values to obtain
more or less the same results as the measured runoff. This indicates that the Ksat value for which no
calibration is needed, would be around 1.2-1.6mm/hour for farmland and 3.6/4.2mm/hour for
grassland. This would bring the hydraulic conductivity close to the 9cm/day (3.75mm/hour) of the
Staringreeks (Wdsten, Veerman, & Stolte, 1994).

So, calibration was very strong to arrive at somewhat acceptable results and no further calibration
was possible due to the very low numbers that LISEM cannot handle. This is also the reason that no
numerical (e.g. using NSE) interpretation was given to the LISEM output. This could be done, but the
numbers would be somewhat of a facade. For example, say the hydrographs comparison between
LISEM and the values measured by the water board would result in an NSE of 0.90 with a Manning’s
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N and Ksat calibration factor of 0.01, what would this 0.90 tell you? The catchment was modelled in a
way not remotely like reality, so this value would lead to misinterpretation of the results.

It could be, however, that newer versions of LISEM, where water flow through the catchment is
faster, could yield different results. As a result of faster water flow and less infiltration time, the Ksat
values that were measured could yield results that are less far off and need less calibration. Fact is
that the current manual measurements of Ksat seem to be orders of magnitude off, something that
is unlikely to completely change with faster water flow. It’s also good to note that understanding the
concepts and relation between connectivity within the catchment and the effect of calibrating with
Manning’s N and hydraulic conductivity is difficult, since these two factors are very sensitive
parameters of the LISEM model (Wei, Dongli, Ming'an, Kwok, & Bingsheng, 2015).
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7 Conclusions

7.1—Comparing satellite and in situ measurements of soil moisture

Statistical analysis of the Sentinel and Campbell data indicates that the two datasets do have no
significant correlation. The only weak correlation found (after outliers were excluded) is the Sentinel-
1 on location 1 compared to the 20cm soil moisture values on that same location. Table 8
summarizes the results

Table 8: Summary statistics of Sentinel-1 and Campbell data comparison

R 0.86 0.85 -0.24 -0.04
R? 0.73 0.72 0.06 0.01
NSE 0.89 0.85 -0.16 0.21
RMSE 0.04 0.05 0.14 0.13

The only comparison between Sentinel and Campbell sensors that has an R > 0.85, which in
statistics is considered a fairly strong relationship, see (Rumsey, 2009, p.59), is location one with
20cm depth values of soil moisture.

As can be seen in table 8, the RMSE is quite high for the location 2 comparison. This is also what can
be seen in the regression graphs in figure 21 (chapter 6), the points are farther apart from the
trendline. Points in location 1 are more close to the trendline which indicate better model fit.

To conclude, based on the results the Campbell sensor on location 1 could best be used to calibrate
the Sentinel-1 soil moisture content. Especially during the growing season when Sentinel is
vulnerable to wrong measurements due to vegetation cover. Unfortunately, the Campbell sensor at
location 1 also has the lowest number of observations (n = 22) on a very limited timescale. The
other Campbell measurement values and Sentinel data are too far off and are not suitable for this
purpose.

7.2— Measured versus literature based hydraulic conductivity and the effects on model

output
The results from the three rain showers as presented in chapter 6 show that it is possible to get
reasonably close to measured runoff. Therefore, it is almost impossible to determine a realistic
hydraulic conductivity value for this catchment (or soil type within the region of the catchment).

The hydraulic conductivity values of Imm/hour and 3mm/hour for cropland and grassland
respectively as found in the literature seem to get the LISEM model closer to observed runoff. That is,
with less dramatic calibration needed. Still, the Manning’s N value needs to be set quite low. The
value at which little calibration is needed will be somewhere around 1.2-1.6mm/hour for farmland
and 3.6-4.2mm/hour for grassland. This is based on the multiplication factor of Ksat that is still
needed when considering the literature based values.

Ksat values obtained through manual sampling in this and other studies result in a wider range of
values for different land uses compared to literature. At the moment it is only possible to use
manually obtained Ksat values to run LISEM with lots of calibration effort. This may improve in the
future as the model is further developed.
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Annex 1 — The Sentinel-1 soil moisture script

//Basic settings

var EXPORT _image = true;

var EXPORT_table = false;

var MOSAIC = true;

var SAT_5cm = ee.Image("users/hjbenninga/BOFEK2_1 VGE_SAT 5cm");
var WP_5cm = ee.Image("users/hjbenninga/BOFEK2_1 VGE_WP_5cm");
Map.centerObject(catsop, 14);

var SCALE =5; //scale [meter] of exported image and table

var Area = catsop; //area over which statistics are calculated

var Area_small = catsop; //area that is covered with imagery in the output

var Date_image = ee.Date('2019-05-26T00:00:00');

//LOADING OF SENTINEL-1

//Load Sentinel-1 C-band SAR ground range collection (log scaling, VV co-polar)

var collection_S1_TOTAL = ee.ImageCollection('COPERNICUS/S1_GRD').filterBounds(Area)
filter(ee.Filter.listContains('transmitterReceiverPolarisation','VV'))
filter(ee.Filter.eq('instrumentMode','IW'))
filterDate('2016-01-01', Date.now())
filter(ee.Filter.eq('resolution_meters', 10));

var collection_S1_STATS = collection_S1_TOTAL.filterDate('2016-01-01','2020-03-04'); //statistics are
calculated over the selected time period

//INCIDENCE ANGLE CORRECTION
var n=2; //normalization coefficient

var angle_ref =37.5; //reference angle

//define incidence angle correction function
var incidence_angle_correction_function = function(image) {
var image_m2m?2 = image.expression(

'10**(image/10)' {
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'image': image.select('VV')

1

varimage_m2m2_cor = image_m2m?2.expression(
'sigma0*((cos(pi/180*angle_ref)**n)/(cos(pi/180*angle)**n))' {
n':n,
'angle_ref': angle_ref,
'sigma0': image_m2m?2,
'angle': image.select('angle'),
'pi': Math.PI

1;

var output_image = image_m2m2_cor.expression(
'log10(sigma0_cor)*10', {
'sigma0_cor': image_m2m2_cor

1

return output_image.set('system:time_start’,
image.get('system:time_start'));

|5

//apply incidence angle correction function
var collection_S1_STATS_IC_cor = collection_S1_STATS.map(incidence_angle_correction_function);

var collection_S1_TOTAL_IC_cor = collection_S1_TOTAL.map(incidence_angle_correction_function);

//MASK SENTINEL-1: VALID OBSERVATION VALUES
var min_value = -20;
var max_value = -2;

var min_coverage_ratio =0.75;
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//Define making function
var valid_values_mask_function = function(image) {
var lower_mask = image.gte(min_value);

var new_img = image.updateMask(lower_mask);

var upper_mask = new_img.lte(max_value);

var new_img2 = new_img.updateMask(upper_mask);

return new_img2.set('system:time_start’,
image.get('system:time_start'));

|5

//apply threshold values to image collections
var collection_S1_STATS_IC_cor = collection_S1_STATS_IC_cor.map(valid_values_mask_function);

var collection_S1 TOTAL_IC cor = collection_S1_TOTAL_IC_cor.map(valid_values_mask_function);

//MASK SINTINEL-1 : COVERAGE OF A PIXEL

//Determine ratio of images

var count_collection_TOTAL = collection_S1_TOTAL_IC_cor.reduce(ee.Reducer.count());

var count_collection_TOTAL_masked = collection_S1_TOTAL_IC_cor.reduce(ee.Reducer.count());
var count_collection_STATS = collection_S1_STATS_IC_cor.reduce(ee.Reducer.count());

var count_collection_STATS_masked = collection_S1_STATS_IC_cor.reduce(ee.Reducer.count());

var valid_coverage_STATS_ratio = count_collection_STATS_masked.divide(count_collection_STATS);

var valid_coverage_TOTAL_ratio = count_collection_TOTAL_masked.divide(count_collection_TOTAL);

//Apply filter of min_coverage_ratio

var collection_S1_STATS_IC_cor_Masked2 = collection_S1_STATS_IC_cor.map(function(img) {
var mask = valid_coverage STATS ratio.gte(min_coverage_ratio);
var new_img = img.updateMask(mask);

return new_img;});
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//CHANGE DETECTION STATISTICS
collection_S1_STATS_IC_cor_Masked2.reduce(ee.Reducer.max()); // Maximum in each pixel
collection_S1_STATS_IC_cor_Masked2.reduce(ee.Reducer.min()); // Minimum in each pixel
//Get stats as input to change detection

var max_collection = collection_S1_STATS_IC_cor_Masked2.reduce(ee.Reducer.percentile([97.5]));
//97.5% percentile to exclude outliers

var min_collection = collection_S1_STATS_IC_cor_Masked2.reduce(ee.Reducer.percentile([2.5]));
//2.5% percentile to exclude outliers

//RETRIEVE A RELATIVE SOIL MOISTURE INDEX
//define change detection function
var change_detection_function = function(image) {
var output_image = image.expression(
'(s1_im -s1_min)/(s1_max-sl_min)'{
's1_im':image,
's1_min":min_collection,
's1_max': max_collection,
};
return output_image.set('system:time_start’,
image.get('system:time_start'));

|3

//apply change detection
var cd_s1 = collection_S1_TOTAL IC_cor.map(change_detection_function);

//cd_s1 indicates the relative saturation of the soil as a value between 0 and 1

//RETRIEVE VOLUMETRIC SOIL MOISTURE
var WP_SAT _scale_function = function(image) {
var output_image = image.expression(
'(MAX - MIN) * index + MIN', {
'index': image,

'MIN': WP_5cm,
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'MAX': SAT_5cm, });

return output_image.set('system:time_start', image.get('system:time_start'));};

//Apply scaling between WP and SAT
var cd_s1 volumetric = cd_s1.map(WP_SAT_scale_function);

print(cd_s1_volumetric,'Image collection of volumetric soil moisture maps');

//CD_S1_volumetric map

//Map.addLayer(cd_s1_volumetric);

//MAPS AND GRAPHS
//Map display - mosaic images on same day that cover Area_small
if (MOSAIC === true) {

var date_object =
ee.Date(ee.Image(cd_s1_volumetric.filterDate(Date_image,Date.now()).filterBounds(Area_small).firs
t()).get('system:time_start'));

var c¢d_s1_volumetric_date =
ee.ImageCollection(cd_s1_volumetric.filterDate(date_object,date_object.advance(1,'day')).filterBou
nds(Area_small)); //select images that cover area of interest on/after date image

varimagel = ee.Image(cd_s1_volumetric_date.first());
var date_imagel = ee.Date(imagel.get('system:time_start'));

var cd_s1_volumetric_date_image = cd_s1_volumetric_date.mosaic().set('system:time_start’,
date_imagel);

var cd_s1_volumetric_date_image_Study_area = cd_s1_volumetric_date_image.clip(Area_small); //
Clip to image to area of interest

print(cd_s1_volumetric_date_image_Study_area,'Mosaiced image covering the area of interest on
date of interest');

print(cd_s1 volumetric_date_image,'Mosaiced image covering the area of interest on date of
interest');

}else {

var cd_s1_volumetric_date_image =
ee.Image(cd_s1_volumetric.filterDate(Date_image,Date.now()).filterBounds(Area_small).first());
//Select first image that covers area of interest on/after Date_image
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var cd_s1_volumetric_date_image_Study_area =cd_s1_volumetric_date_image.clip(Area_small); //
Clip to image to area of interest

print(cd_s1_volumetric_date_image_Study_area,'First image covering the area of interest on date
of interest');}

//ADD LAYERS TO MAPS
Map.centerObject(catsop, 14);

Map.addLayer(SAT_5cm, {minL:0, max:0.7, opacity:1, palette: ['ff1c05’,
'fff705','4dff03','07ffe8','0501ff']}, 'saturation soil moisture [m”*3/m~3'); //Add map with saturation
soil moisture

Map.addLayer(WP_5cm, {min: 0, max: 0.7, opacity:1, palette: ['ff1c05',
'fff705','4dff03','07ffe8','0501ff']}, 'Wilting point soil moisture [m~*3/m~3]'); // Add map with wilting
point soil moisture

var valid_coverage_ratio_Study_area = valid_coverage STATS_ ratio.clip(Area_small);

Map.addLayer(valid_coverage ratio_Study area, {min: 0, max: 1, opacity: 1, palette:
['LightBlue','blue']}, 'Ration of valid values');

//map soil moisture image

Map.addLayer(cd_s1_volumetric_date_image_Study_area, {min: 0, max: 0.7, opacity:1,palette:
['ff1c05', 'fff705','4dff03','07ffe8','0501ff']}, 'Volumetric soil moisture [m”3/m#3]');

//Plot figure soil moisture in time

var SoilMoisture_mean_TimeSeries = ui.Chart.image.series(cd_s1_volumetric, Area_small,
ee.Reducer.mean(), SCALE).setOptions({

hAxis: {title:'Date'},
vAxis: {title:'Volumetric soil moisture'} });
print(SoilMoisture_mean_TimeSeries,'Time series of mean soil moisture for the area of interest');

var SoilMoisture_count_TimeSeries = ui.Chart.image.series(cd_s1_volumetric, Area_small,
ee.Reducer.count(), SCALE).setOptions({

hAxis:{title:'Date'},
vAxis:{title:'Number of pixels'}});

print(SoilMoisture_count_TimeSeries,'Time series of number of pixels for the area of interest');
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//EXPORT A TABLE AND IMAGE
var date_object = ee.Date(cd_s1_volumetric_date_image_Study_area.get('system:time_start'));
var date_string = date_object.format('YYYYMMdd_HHmm');

if (EXPORT _table === true) { //// From: https://gis.stackexchange.com/questions/274569/exporting-
table-in-to-a-drive-from-google-earth-engine-returns-blank-rows

var cd_s1l_volumetric_Area_small =

ee.ImageCollection(cd_s1_volumetric.filterBounds(Area_small)); // Select images that cover area of
interest

var reducers = ee.Reducer.mean().combine({ //combine the mean and count
reducer2: ee.Reducer.count(),
sharedInputs: true
};
var Region_table = cd_s1_volumetric_Area_small.map(function(img) {
return img.reduceRegions({
collection: Area_small,
reducer: reducers,
scale: SCALE
}).map (function(f){
return f.set('Date’, ee.Date(img.get('system:time_start')));
};
}).flatten();
print(Region_table.limit(20),'Feature table: first # elements in time series');
Export.table.toDrive({
collection: Region_table,
description: 'ResultsTable_area_of_interest' + date_string.getinfo(),
selectors:(['Date','Mean’','Count']),
1
print('See tab Tasks to start exporting a table with mean and number of pixels for area of interest');

}

else {
print('No table export (see variable EXPORT table');

}
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//Export the image
print(‘'Timestamp image: ', date_string);
if(EXPORT _image === true) {
Export.image.toDrive({
image: cd_s1_volumetric_date_image_Study_area,
description: 'Vol_SoilMoisture' + date_string.getinfo(),
scale: SCALE, //In meters, specified in line 11
region: Area_small
};
print('See tab Tasks to start exporting a soil moisture map for area of interest');
} else {
print('No image export (see variable EXPORT_image)');

}
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Annex 2 — November fieldwork layout form

General

Date

Time

Sample location
Sample number

TDR measurements First Second Third

Values at point 1

Values at point 2

Values at point 3

Values at point 4

NI 1 2

Ksat
sample
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Annex 3 — The PCraster script

#comments start with a hashtag

#! --matrixtable --Iddin --clone clone.map

HHHEHEHEHEHEHE A

# PCRASTER script to build a LISEM input database #

# made by Meindert Commelin 06/02/2019 #

HUHHH S R

binding

HutHHH R

### INPUT MAPS #it#

HUHHH R

dem = dem.map; # digital elevation model, area must be <= clone

lu = lu.map; # field id's for land use

# roads = roads.map; # location of roads value =1

# grass = grasswid.map; # only if buffers are included

surface = catch.map; # field id's for texture/soil map

# chanmask = chanmask.map; # location of channels value = 1 (optional)
HHHHHEHEHEHEH

#it# INPUT TABLES ###

HHHHHEHEHEHEH

# There are two tables which combine with either land use or soil/geology.
# Choose for each of the following 15 parameters in which table it belongs.
# renumber the paramaters for each table (see example basic script)

# unittblsoil = surface.txt;

# table with soil parameters for each field id

unittbl = lookup_tbl.txt;

# table with crop and land use parameters for each field id

#

# 01 rr (cm) = random roughness

# 02 n = Manning's n

# 03 stonefraction (ratio)

# 04 coh (kPa) = cohesion of soil

# 05 aggregate stability (number)

# 06 D50 (um)

# 07 ksat (mm/h)

# 08 psi initial (cm)

# 09 thetas (cm3/cm3) = porosity

# 10 thetai (cm3/cm3) = initial moisture content

# 11 soildepth (cm)

# 12 per (fraction) = surface cover by vegetation

# 13 lai (m2/m2) = leaf area index

# 14 ch (m) = crop height

# 15 cohadd (kPa) = additional cohesion by roots

HiutHHH B HEH

#i# INPUT CONSTANTS #itH

HHHHHEHEHEHEHE

# channel properties:

# NOTE: if channels with different parameters, use a table as with land use.
# Chanwidth = 2; # width of channels in meters

# Chanside = 0; # tan of angle between side and surface (0 = rectangular)
# Chanman = 0.2; # Manning's n in channel

44



# Chancoh = 10; # high cohesion, kPa

# ChanKsat = 20; # channel ksat for infiltration

# roads:

# widthroads = 6; # width of roads in meters
HEHHHEH

### PROCES MAPS #i#

HEHHHEH

area = area.map; #value=1

HitHHH R

### OUTPUT MAPS #it#

HitHHH R

H### rainfall map ###

rain_id = id.map; # only if >1 rainfall zones --> not needed | assume
H### basic topography related maps ###

grad = grad.map; # slope gradient

Ldd = Idd.map; # Local Drain Direction

outlet = outlet.map; # location outlets and checkpoints
outpoint = outpoint.map; # outlet points subcatchments
H#i# land use maps Hitt

per = per.map; # surface cover by vegetation

lai= lai.map; # leaf area index

ch = ch.map; # crop height

roadwidth = roadwidth.map;

# grass = grasswid.map; # width of grass strips (optional)
# smax = smax.map; # max canopy storage (optional)
Hit# surface maps Hit#

rr = rr.map; # random roughness

mann = n.map; # Manning's n

stone = stonefrc.map; # stone fraction

# crust= crustfrc.map; # crusted fraction of surface (optional)
# comp = compfrc.map; # compacted fraction of surface (optional)
# hard = hardsurf.map; # impermeable surface (optional)
### erosion maps ###

coh = coh.map; # cohesion of the soil

cohadd = cohadd.map; # additional cohesion by roots
aggrstab = aggrstab.map; # aggregate stability

D50 = d50.map; # median texture size

### infiltration maps ###

# for G&A 1st layer:

ksat= ksatl.map;

psi= psil.map;

pore= thetasl.map;

thetai= thetail.map;

thetas= thetasl.map;

soildep= soildepl.map;

# for G&A 2nd layer: (optional)

# ksat2= ksat2.map;

# psi2= psi2.map;

# pore2=thetas2.map;

# thetai2= thetai2.map;

# soildep2= soildep2.map;

### channel maps ### (optional)
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# Iddchan = Iddchan.map;

# chanwidth = chanwidt.map;

# chanside = chanside.map;

# changrad = changrad.map;

# chanman = chanman.map;

# chancoh = chancoh.map;

### channel infiltration ### (optional)

# chanksat = chanksat.map;

initial

HiUtHHHH R

#i#t# PROCESS MAPS ###

HUtHHH

area=dem * 0+ 1;

HUtHHH R

### MAPS WITH RAINFALL ###

HUHHH R R

report rain_id = area; # only 1 rainfall zone

# for >1 rainfall zones based on points use ArcGIS or:

# report id = spreadzone(points, 0, friction);

# with; points = boolean map with locations of rainfall stations
# and friction = friction map (see page 70 of LISEMdocumentation6)
HEHHHEHHEHEHEH

H## BASE MAPS ####

HEHHHEHHEHEHEH

report grad = max(sin(atan(slope(dem))),0.001);

report Ldd = Iddcreate(dem, 1e20,1e20,1e20,1e20); # correct topo for local depressions #
report outlet = pit(Ldd);

report outpoint = pit(Ldd);

HUHHHH R ]

### LAND USE MAPS #i#t#

HUHHHH R

report per = lookupscalar(unittbl, 12, lu); # fraction soil cover
report ch = lookupscalar(unittbl, 14, lu); # crop height (m)

# choose method for lai:

report lai = lookupscalar(unittbl, 13, lu); # leaf area index

# or: (explained on page 71-72 from LISEMdocumentation6_170215)
# per = min(per, 0.95);

# lai = In(1-coverc)/-0.4;

# report lai = if(per gt 0, lai/per, 0); # leaf area index

HiutHHH R

### SURFACE MAPS ###

HiutHHH R

report rr = lookupscalar(unittbl, 1, lu); # random roughness (=std dev in cm)
report mann = lookupscalar(unittbl, 2, lu); # Manning's n

# report mann = 0.051*rr+0.104*per; # or use simple regression from Limburg data: CAREFULL this is
not published

report stone = lookupscalar(unittbl, 3, lu); # stone fraction

# report roadwidth = roads * scalar(widthroads);

HEH

#it# EROSION MAPS #itt

HEHHEH

report coh = lookupscalar(unittbl, 4, lu);
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report cohadd = lookupscalar(unittbl, 15, lu);

report aggrstab = lookupscalar(unittbl, 5, lu);

report D50 = lookupscalar(unittbl, 6, lu);

HEHHHHE

### INFILTRATION MAPS for GREEN & AMPT ###

HEHHHHE

report ksat = lookupscalar(unittbl, 7, lu);

report psi = lookupscalar(unittbl, 8, lu);

report thetas = lookupscalar(unittbl, 9, lu);

report thetai = lookupscalar(unittbl, 10, lu);

report soildep = lookupscalar(unittbl, 11, lu);

# report ksat2 = lookupscalar(unittbl[name], [col.nr], [map.name]);
# report psi2 = lookupscalar(unittbl[name], [col.nr], [map.name]);

# report thetas2 = lookupscalar(unittbl[name], [col.nr], [map.name]);
# report thetai2 = lookupscalar(unittbl[name], [col.nr], [map.name]);
# report soildep2 = lookupscalar(unittbl[name], [col.nr], [map.name]);
HHHHHH

### CHANNEL MAPS ###

HEHHHHHEHEH R HE

# report Iddchan= Iddcreate(dem*chanmask,1e20,1e20,1e20,1e20);
# report chanwidth=chanmask*scalar(Chanwidth);

# report chanside=chanmask*scalar(Chanside);

# report changrad=max(0.001,sin(atan(slope(chanmask*dem))));

# report chanman=chanmask*scalar(Chanman);

# report chancoh=chanmask*scalar(Chancoh);
HEHEHHE

#i# CHANNEL INFILTRATION #it

HEHEHHEHHHHEH HE

# report chanksat = chanmask*scalar(ChanKsat);
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Annex 4 — Rainfall files used for LISEM runs
March 15 rainfall file

T (min) I(mm/h)

28 12 56 0 84
1 24 29 12 57 0 85
2 24 30 12 58 0 86
3 24 31 12 59 0 87
4 24 32 0 60 12 88
5 24 33 12 61 0 89
6 36 34 12 62 0 90
7 24 35 0 63 0 91
8 36 36 12 64 0 92
9 24 37 0 65 12 93
10 18 38 0 66 0 94
11 18 39 0 67 0 95
12 18 40 12 68 0 96
13 18 41 0 69 12 97
14 18 42 0 70 0 98
15 18 43 0 71 0 99
16 18 44 0 72 0 100
17 18 45 0 73 0 101
18 18 46 0 74 0 102
19 18 47 0 75 0 103
20 18 48 12 76 0 104
21 18 49 0 77 0 105
22 12 50 0 78 0 106
23 12 51 0 79 0 107
24 12 52 0 80 0 108
25 12 53 0 81 0 109
26 12 54 12 82 0 110
27 12 55 0 83 0 111
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May 28" rainfall file
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September 29 rainfall file

T (min) I[(mm/h)
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