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1. Introduction and research questions 
Throughout the world erosion is a problem of considerable proportion (Rodrigo Comino, et al., 2016). 

Erosion by wind or water detaches soil particles, which are deposited elsewhere. This process leads 

to fertile topsoil being washed away. Not only does this lead to soil loss at the higher located parts on 

a slope, it also causes the soil to be deposited elsewhere, often at an inconvenient place such as in a 

village, on a road or in a reservoir. Soil erosion models (SEMs) have been used as a tool to 

understand and predict soil erosion on both short- and long-term scales (Baartman et al., 2013;  

Schoorl, Veldkamp, & Bouma, 2002; Coulthard, Hancock, & Lowry, 2012). SEMs use inputs such as a 

digital elevation model (DEM), the amount and intensity of rainfall and soil characteristics to predict 

the amount and location of soil erosion and runoff for a certain rainfall event. These models are 

often event-based, meaning that they require input for a certain rainfall event and give according 

output. These models can be used to estimate the effect of a rainfall event on a landscape with 

reasonable accuracy (Pandey, Himanshu, Mishra, & Singh, 2016). This is potentially crucial 

information in landscapes that are not flat, such as the study area of this research, South Limburg 

(van der Velde et al., 2018). During rainfall events, erosion of soil in the higher parts of the landscape 

can lead to mudflows in the lower parts. Knowing the spatial patterns and quantity of soil erosion 

can be vital information in preventing mudflows in populated areas. LISEM (Limburg Soil Erosion 

Model) is an example of an event-based SEM able to calculate runoff and the amount of sediment for 

a given rainfall event. Usually, the model is calibrated by adjusting parameters such as erodibility, 

deposition or hydraulic conductivity (Baartman et al., 2013). LISEM uses different input parameters 

to process and calculate erosion and runoff. Some of these parameters, like hydraulic conductivity 

and Manning’s N, change model output more than others (Sheikh et al., 2010; Kvaerno & Stolte, 

2012). 

Modern technologies like satellite observations are becoming more and more accessible for scientific 

purposes. Satellites monitor the earth constantly and mostly at fairly high resolutions, providing 

previously unparalleled spatiotemporal coverage of soil and crop characteristics. The Sentinel-1 

satellite has been used for soil moisture mapping at lower resolutions (El Hajj et al., 2017 ). Recently, 

research has suggested and successfully implemented higher resolution use of Sentinel-1 (Hornaek et 

al., 2012 & Lozach et al., 2020). An ongoing research project in the Netherlands successfully applied 

Sentinel-1 to create a soil moisture monitoring network in the eastern part of that country (Benninga 

et al., 2018). This methodology could also possibly be used to create soil moisture maps for SEMs 

such as LISEM.  

Until now, both the hydraulic conductivity and initial soil moisture parameters of LISEM are often 

estimated or sampled and interpolated, but this does not always result in accurate values (Rousseau 

et al., 2012). Since the model can be used as a tool to model landscape runoff behaviour, accurate 

values are crucial. Because erosion causes a lot of nuisance in South Limburg, accurate modelling can 

help predict where sedimentation will occur (Schouten, Rang, & Huigen, 1985; Hollis, 1975; 

Winteraeken & Spaan, 2010). This in turn can help to design measures to prevent or mitigate this. 

Because LISEM is quite sensitive to both initial soil moisture content and hydraulic conductivity, 

improvement of input data for initial soil moisture content consequently could improve model 

output (Sheikh et al.,2010). At the moment, no research has been done into the effects of improved 

initial soil moisture content and hydraulic conductivity spatial values on model output. This research 

aimed to investigate whether the accuracy of initial soil moisture content and hydraulic conductivity 

values can be improved and if this leads to an improvement in LISEM output accuracy. The main 

question of this research was therefore formulated as: to what extend can different ways of data 

collection for initial soil moisture content and hydraulic conductivity help improve LISEM infiltration 
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maps accuracy and consequently LISEM output? The first sub question that was answered is: to what 

extend can existing soil moisture sensors and manual sampling provide a reference to create 

accurate satellite obtained soil moisture maps? The second question will be: to what extend can 

satellite obtained soil moisture values produce significant improvement to model output? Finally, the 

research will focus on to what extend manually obtained hydraulic conductivity maps can produce 

significant improvement to model output? 

2. Study area 
The study area is located in the Limburg, the southern part of the Netherlands, see figure 1. 

The coordinates of the study area are 50.93°N and 5.78°E. The climate in this part of the Netherlands 

features mean daily temperatures ranging from three degrees during winter to roughly twenty 

degrees during summer. The yearly precipitation is around 750mm with the wettest months being 

June, July and August with a precipitation of around 75 mm per month (KNMI, 2020). The type of 

rainfall also differs throughout the year. During winter and spring almost all showers are relatively 

longer and less intensive. Especially during summer, but also sometimes in autumn, showers tend to 

be shorter and more intensive, producing more runoff. 

The soil in the catchment is, like the rest of southern Limburg, loess soil. This soil type has a grain size 

of around 50-60μm (Heinen, Bakker, & Wösten, 2018). The land use in the catchment is 

predominantly agricultural. As can be seen in figure 1, the two largest fields are agricultural fields. In 

2019, the main agricultural field was planted with potatoes. During autumn and winter, the northern 

agricultural field was covered in yellow mustard. When potatoes are grown on the fields, ridges are 

made parallel to the contour lines (in figure 1 that means ridges with a west-northwest direction). 

Some ridges at the western part of the main agricultural field are perpendicular to the contour lines. 

There are two apple orchards which are permanent considering this study’s time frame. Between the 

apple trees are grass strips. Furthermore, there are some plots of grass in the catchment.  

Figure 1: Location of research area in the Netherlands (top left), land use (left) and digital elevation model with stream 
network (right) 
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3. Background 
3.1 – Sentinel 1  
The Sentinel 1 satellite that was used for this research is part of the ESA’s Copernicus Programme. It 

collects ‘C-band synthetic aperture radar (SAR) imagery at a variety of polarizations and resolutions’ 

(Google, 2020). With this, Sentinel is part is part of the active remote sensing, meaning it sends a 

signal of its own rather than using for example radiation from the sun as basis of observations. This 

has some advantages and disadvantages. One of the advantages is that microwave SAR imagery can 

penetrate through not too thick cloud layers and vegetation. Another advantage that obviously 

comes with all active remote sensing is that it is also possible to take images at night. There are also 

some disadvantages, starting with interpretation of data. (Pre)processing of data is required since 

the raw data collected in this way are harder to interpret than optical (passive) remote sensing data. 

Another disadvantage is the occurrence of speckle effects in the image. When using satellite imagery, 

it is important to determine and realize some key parameters of the satellite observations: 

wavelength, polarization and incidence angle.  

3.1.1 – Wavelength 
The wavelength of a signal depends of its frequency. A higher frequency means a shorter wavelength 

and less capability to radiate through materials and vice versa. Lower frequency (and therefore 

longer wavelength) bands are therefore used in for example ground penetrating radar because of 

their capabilities to penetrate through materials.  

As mentioned before, Sentinel 1 collects C-band data. A band actually is a range of certain 

frequencies that can be used for certain purposes. As can be seen in table 1, different frequencies 

can be used for different applications.  

Table 1: Overview of satellite bands, according frequencies and application examples. Edited from: (Podest, 2017) 

Band Frequency range Application examples 

L-band 1 – 2 GHz Agriculture, forestry, deeper soil moisture 

C-band 4 – 8 GHz Agriculture, surface soil moisture  

X-band 8 – 12 GHz Agriculture and high resolution radar 

Ku-band 14 – 18 GHz Glaciology and snow cover mapping 

Ka-band 27 – 47 GHz High resolution radars 

 

3.1.2 – Polarization 
There are four polarizations within the Sentinel 1 satellite: horizontal transmit, horizontal receive 

(HH), horizontal transmit, vertical receive (HV), vertical transmit, horizontal receive (VH) and vertical 

transmit, vertical receive (VV). For this study, the VV polarization was used. It is not within the scope 

of this study to explain and elaborate on the choice in technical terms. The VV polarization was 

chosen because it is the most used over land and is more sensitive to soil moisture than VH 

(Benninga & Pezij, 2019). 

3.1.3 – Incidence angle and backscatter 
The incidence angle is the angle between the surface on which the radar illuminates and the 

direction of the illumination beam. The angle will slightly change based on the height of the sensor 

(satellite) and the orbit of the sensor. The backscatter of the radar contains information about the 

surface which it illuminates. Calm open water and paved highways for example cause a low 

backscatter because of their dielectric properties – they are good reflectors. In SAR images it is 
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therefore displayed as a darker colour. Built-up areas, rough surfaces and vegetation cause a higher 

backscatter, as can be seen in figure 2 and are therefore displayed as more bright (white) areas on 

the SAR images. In figure 2a, the surface reflects the signal without backscatter (think of water or 

concrete). Figure 2b shows what happens on a rough surface, the reflection is in multiple directions 

and only part is reflected back to the emitter. More or less the same happens in figure 2c. These 

figures are examples of build-up area and vegetation respectively.  

 

Figure 2: Backscatter mechanisms. Source: Chang (2016) 

3.2 – The Limburg Soil Erosion Model (LISEM) 
As mentioned before, LISEM is a SEM. More specific it is a physically based model which is capable of 

simulating rainfall events and the erosion and runoff that they cause. LISEM works event-based and 

is not designed to model long-term impact. As can be seen in figure 3, part of the main loop of LISEM 

is calculating infiltration through calculating precipitation and interception first. The infiltration 

component of LISEM is based on soil properties, roads and buildings. The soil properties consist of 

hydraulic conductivity (Ksat), porosity (theta-s) and initial soil moisture content (theta-I) (Jetten, 

2018).  

3.2.1 – Hydraulic conductivity 
The hydraulic conductivity (Ksat) of a soil had a unit of distance/time (e.g. mm/hour). It refers to the 

soil property of how much water can infiltrate in the soil in a certain time in saturated condition. The 

higher the hydraulic conductivity, the higher the potential flow through the soil and the more water 

can infiltrate into the soil during a rain storm. Soil with a higher hydraulic conductivity are for 

example sandy soils. Lower hydraulic conductivity is found in soils that have smaller grain sizes, such 

as loess and clayish soils.  

3.2.2 – Porosity 
The porosity (theta-s) is defined as the amount of space in a soil that is available to store water. For 

example, a porosity of 0.5 means that 50% of the soils’ volume is available for water storage. The soil 

cannot store more water than the porosity. Therefore, if the porosity value is reached, water will no 

longer be able to infiltrate and start producing runoff. 
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Figure 3: Overview of LISEM workflow, source: Jetten, 2018, p.71 

3.2.3 – Initial soil moisture content 
The initial soil moisture content (theta-i) is the amount of water in the soil as a fraction between 0 

and the porosity. Initial soil moisture can never exceed the porosity and needs to be seen in relation 

to the porosity. For example, a soil moisture content of 0.3 is not necessarily a small number when 

the porosity is 0.35. LISEM defines initial soil moisture content as the soil moisture content just prior 

to a rain shower. The fraction of water that can be stored in the soil is the difference between 

porosity and initial soil moisture content. Therefore, if the initial soil moisture content is higher, less 

water of a rain shower is able to infiltrate the soil and more run off. The other way around, lower soil 

moisture content allows more water to infiltrate and less to runoff.  

LISEM works by calculating net precipitation, which is defined as total precipitation minus 

interception. The second step for the model is calculation of the infiltration rate. This is based on the 

Darcy relationship equation (Jetten, 2018). The model calculates infiltration using equation 1, which 

is based on the Green and Ampt method for infiltration. 

Equation 1 𝑞 = −𝐾𝑠𝑎𝑡 (
𝑑−ℎ

𝐿
+ 1)  

In which 𝐾𝑠𝑎𝑡 is the saturated hydraulic conductivity in m/s, 𝐿 is the depth of the wetting front, ℎ 

the suction at wetting front and 𝑑 the overpressure depth of the water at soil surface (Baartman et 

al., 2013). The Green and Ampt method for infiltration is based on the assumption that a wetting 

front moves downward into the soil parallel to the surface of that soil (Jetten, 2018).  

If the Ksat or theta-I values ceteris paribus change, this will lead to another model output in terms of 

runoff. 
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3.3 – Time domain reflectometry 
Time domain reflectometry (TDR) can be used as an indirect measurement of the soil water content 

in a soil. It is based on the idea that electromagnetic current travels through a medium – in this case 

partially wetted soil – with a certain speed. An electromagnetic signal is send between two probes, 

which are inserted into the ground. The travel time of the signal between these probes can then be 

calculated using equation 2: 

Equation 2 𝑡 =
𝐿

𝑐
 

In which 𝑡 is the travel time in seconds, 𝐿 the signal travel distance in meters and 𝑐 a constant of 3 ∗

108 m/s (the speed of electric signal through a vacuum). The velocity of the signal can then be 

calculated using equation 3: 

Equation 3 𝑣 =
𝐿

𝑡
 

Where 𝑣 is the speed in metres per second. The dielectric constant of the soil (𝐷), which relates to 

the soil moisture content, can then be calculated with equation 4: 

Equation 4 𝐷 = (
𝑐

𝑣
)

2
  

3.4 – Accuracy versus precision 
The aim of this research is to investigate whether the accuracy of theta-I values can be improved. It is 

good to give a short description of the concept of accuracy and precision. One could ask why it is 

important to be as accurate as possible, instead of being as precise as possible. Precision can be 

described as a way to describe how repeatable a measurement is. A measuring instrument with high 

precision will give results that are close to each other. This can be compared to shooting arrows at a 

target, if all arrows hit close to each other, the precision is high. This does not say much of how close 

the arrows are to the centre of the target however. So, precision is not concerned with how close to 

the ‘target’ the measurements are. In other words, measurements that are very precise don’t 

actually have to be close to the true value, the ‘target’. 

Accuracy on the other hand is a way of indicating how close a value is to the true value. In the 

example of arrows, it indicates how close to the middle of the target the arrows are. Achieving a high 

accuracy means that you are close to the real world (‘correct’) value with your measurements. In this 

research, the accuracy of data is more important than the precision, because the theta-I values that 

will be obtained will lead to other model outputs. If they are close to reality (that is, have a high 

accuracy), model accuracy might also improve. 

Accuracy can be difficult to measure. In this research, existing soil moisture sensors will be used 

which are already calibrated. They can serve as a reliable reference for measurement data from for 

example the satellite. The data from the sensors can be seen as accurate, so the satellite data should 

be coming close to these values in order to be accurate. 
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4 Methods 
This chapter provides an overview of all methodology that was used to obtain the results. The first 

two sections describe the fieldwork that was done and the data that was obtained from Sentinel. 

Section three details the statistical methods that were used to compare Sentinel and in situ 

measurements. Sections four to six describe the steps that were taken to model the catchment in 

LISEM. Lastly, sections seven and eight describe the rainfall events that were used and how they 

were used to generate LISEM output.  

4.1 – Collection of soil moisture data 
Soil moisture data were collected using three sources: soil moisture sensors in the soil, Sentinel-

based soil moisture maps and manual TDR measurements. The first source, soil moisture sensors, 

existed of two Campbell CS616 soil moisture sensors at location one and two in figure 4. These 

sensors were already present due to an ongoing research project and were used to obtain soil 

moisture data at two depths – 5 and 20 cm. The data from these sensors was saved to a local 

computer and at were manually transferred to a laptop computer when the locations were visited. 

The Sentinel 1 satellite data was used to determine soil moisture levels within the study area. This 

satellite passes over the catchment roughly once every three days, giving a good temporal frequency. 

Researchers of the programme Optimizing Water Availability with Sentinel-1 Satellites (OWAS1A) 

developed an algorithm in which data from the Sentinel-1 satellite can be converted to soil moisture 

maps using the Google Earth Engine. The base script of this algorithm was obtained from the 

OWAS1S project (Benninga, van der Velde, & Su, 2016). To be able to calculate the soil moisture 

value, the soil moisture at wilting point and saturation needed to be incorporated. These data is 

available for the Netherlands in the form of the Bodemfysische Eenheidskaart 2012 (BOFEK2012), 

which is based on the Staringreeks (Heinen, Bakker, & Wösten, 2018). Values for soil moisture at 

wilting point and saturation were obtained from BOFEK2012 (Wösten, Veerman & Stolte, 1994; 

Wösten et al., 2013). The script that was used can be found in annex 1. 

The Sentinel-1 series of soil moisture 

measurements were converted into 

graphs for comparison with the 

Campbell sensor soil moisture series 

and the manual sampling series. This 

was done by defining two small areas 

within the total catchment, one around 

the location of the northern Campbell 

sensor (sensor 2) and one around the 

location of the southern one (sensor 1), 

see figure 4. For each of these areas, 

the graph of soil moisture was plotted 

and compared to the actual Campbell 

sensor measurements. 

Next to these soil moisture sensors and 

satellite observations, manual sampling 

was conducted to establish the soil 

moisture content in the soil at a certain 

day. There are various methods to do 

this, such as hand sampling and 

Figure 4: Areas around the two Campbell sensors (red) that were used 
for Sentinel soil moisture collection. The southern area is location 1, the 
northern area is location 2. 
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determining the amount of water in the soil by weighing and drying the soil. The latter takes a lot of 

time and is not very efficient. Another way to measure this is by using TRD. This is a relatively non-

labour intensive and accurate way to measure soil water content. The HD2 Mobile Moisture Meter 

from Van Walt was used to perform this part of the fieldwork.  

The soil moisture meters provide a reference soil moisture map to the satellite measured soil 

moisture data. Three fieldwork campaigns were 

conducted on October 2nd and November 5th ,2019 

and March 20th, 2020. The goal was to obtain a soil 

moisture map on the date of measurement for 

comparison and evaluation to the data measured 

by the satellite on the same day. The layout of the 

November fieldwork can be seen in figure 5. On 

each sampling point, four subpoints were created in 

a 10 meter box around the sample location (see 

annex 2 for more details). The average of all 

measurements at one location was taken as the soil 

moisture value at that location. 

The fruit orchards features two types of land use 

and according soil moisture and Ksat 

measurements: within the rows of the trees and 

between the rows on the grass. These two were 

distinguished because they likely have very 

different characteristics in terms of saturated 

conductivity and soil moisture. So for each location 

within this orchard one sample was taken 

withing the tree rows and one in between the 

tree rows. At the moment of sampling, the apple 

trees were being harvested. 

The March fieldwork featured a slightly different 

approach. Twenty-three sampling points were 

selected, per point three measurements were 

taken. Again, points in the fruit orchard were 

sampled twice – once in between the trees and 

once in between the rows. An overview of the 

sampling points used in the March fieldwork can 

be seen in figure 6. 

 

 

 

 

Figure 6: Sampling lay-out March fieldwork 

Figure 5: Sampling lay-out November fieldwork 
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4.2 – Collection and calculation of saturated hydraulic conductivity data 
The Ksat measurements were done along the lines of the steps mentioned in the Manual for soil 

physical measurements. For each 

measurement, two anchor rods 

were drilled into the soil, an 

horizontal rod was placed between 

them, secured with bolts to prevent 

movement. The sample ring was 

equipped with an iron cutting ring 

to ensure smoother passing into 

the soil, see figure 7. A hydraulic 

pump was then used to drill the 

ring into the soil with minimal soil 

disturbance (Stolte, 1997). One 

difference to figure 7 is that these 

Ksat samples were taken from the 

topsoil, not the subsoil. After the 

Ksat samples were taken, they were numbered, rolled in plastic and stored in a cool room to be 

analysed.  

Analysis of the Ksat samples was done using the 

Standaardwerkvoorschrift bepaling van de verzadigde 

waterdoorlatendheid, which is based on the NEN5789 

protocol. The samples were carefully trimmed so that they 

exactly matched the top and bottom extend of the ring. They 

were then placed in a layer of a few centimetres of water to 

slowly start infiltration. After a week they were put in the 

measurement setup. Once the whole sample was saturated 

and a small layer of water appeared on top of the sample, a 

column of approximately ten centimetres of water was put 

on top of the sample and twenty-four hours later, the 

measurement of hydraulic conductivity was carried out, an 

example of the setup used can be seen in figure 8. For each 

sample, three measurements of Ksat were taken with each 

measurement lasting at least ten minutes and collecting at 

least 100 millilitres of water, in accordance with the 

aforementioned protocol. 

The Ksat values were calculated according to the equations 5 

and 6: 

Equation 5 𝐾𝑠𝑎𝑡 =
𝑉

|∆𝐻|∗∆𝑡∗𝐴
 

In which in equation 6  |∆𝐻| =
𝑧𝑡𝑜𝑝−𝑧𝑜𝑢𝑡

𝐿
 and 𝑞 =

𝑉

∆𝑡∗𝐴
   

In which 𝑉 is the volume of water that was collected in ∆𝑡 time, 𝐿 the height of the sample and 𝐴 the 

area of the sample. 

Figure 7: Hydraulic conductivity measurement method. Source: Stolte, 1997, 
page 14 

Figure 8: Measurement setup during 
measurements of Ksat samples 
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4.3 – Comparison of Sentinel and measured data 
The Google Earth engine was used to create a graph of average VWC in the total catchment and in 

the locations of the Campbell sensors during the year 2019. The VWC values measured with these 

sensors were averaged per day and put in a graph as well. Direct comparison of these graphs was 

difficult, so a statistical approach was used to determine the correlation r between the Sentinel daily 

averages on locations of the Campbell sensors and the daily averages measures by these sensors. 

This was done by calculating the Pearson correlation coefficient r with equation 7:  

Equation 7 𝑟 =  
1

𝑛−1
(

∑(𝑥−𝐸(𝑥))∗ ∑(𝑦−𝐸(𝑦))

𝑠𝑥∗𝑠𝑦
) 

in which E(x), E(y) are the average values of the x and y variable, n is the number of data points that x 

and y share and s(x), s(y) are the standard deviations of the variables. The standard deviations s were 

calculated using equation 8: 

Equation 8 𝑠 = √∑(𝑥−𝐸(𝑥))
2

𝑛−1
 

in which E(x) is the average value of the x variable and n is the number of values over which the 

standard deviation is calculated. 

Another way that the Sentinel data were compared to the data measured with the Campbell sensors 

is by using the RMSE. The Sentinel based values were determined ‘model’ outputs, the Campbell 

sensor data the ‘observed’ date. Equation 9 was used: 

Equation 9 𝑅𝑀𝑆𝐸 = √
∑(𝑥𝑚𝑜𝑑𝑒𝑙𝑒𝑑−𝑥𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑)^2

𝑛
 

In which n is the number of observation pairs and, 𝑥𝑚𝑜𝑑𝑒𝑙𝑒𝑑 are the Sentinel SWC values and 

𝑥𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 are the Campbell sensor SWX values. 

The third way that the Sentinel and soil moisture sensor data were compared was by using the Nash 

Sutcliffe coefficient (NSE). The NSE was calculated using equation 10: 

Equation 10  𝑁𝑆𝐸 = 1 −
∑ (𝑄𝑜

𝑡−𝑄𝑚
𝑡𝑇

𝑡=1 )^2 

 ∑ (𝑄𝑜
𝑡−𝑄𝑜̅̅ ̅̅𝑇

𝑡=1 )^2
 

In which 𝑄𝑜
𝑡  are the observed values – in this case the VWC values observed with the soil moisture 

sensors – 𝑄𝑚
𝑡  are the modelled values – in this case the VWC measured with Sentinel.  

 

4.4 – Data processing and setting up LISEM 
Preparation of data for LISEM was done using the Nutshell software – which is a Windows shell for 

PCraster, the input map type that is required for LISEM. A PCraster script was used to create all 

needed maps for LISEM to run. This script can be found in annex 3.  
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The soil moisture maps that Sentinel 

provides are ten meter resolution and 

cover the whole catchment. In LISEM, 

one soil moisture per field was assigned. 

Therefore, the Sentinel picture needed 

to be broken down into field-size parts. 

This was done with the Arcmap software 

and is visualised in figure 9. 

Every field was made into a separate 

feature. A Sentinel image was then used 

out of which all fields were clipped. The 

result being Sentinel images per field in 

the catchment. These individual files were used to find the average soil moisture value, which were 

then used as input for LISEM.  Table 2 provides an example of all data that were used per field of the 

study area. In the different runs and scenario’s, values of this table were adjusted. A short 

explanation of each of the parameters will be given now. 

Land use: see table 2 for land use corresponding to the field numbers. Numbers 90, 91 and 100 are 

roads or build-up area. 

Random roughness, Manning’s N, LAI and PSI were chosen based on appendix A and B of the LISEM 

manual, which provides values for these variables based on their land use (Jetten, 2018). 

Porosity: the soil samples that were used to determine Ksat were afterwards used to determine 

porosity. They were weighed when completely saturated, then dried in an 105 degrees Celsius oven 

for 72 hours and weighed again. To determine porosity, equation 11 was used for this: 

Equation 11 𝑃𝑜𝑟𝑜𝑠𝑖𝑡𝑦 =  
𝑊𝑤𝑒𝑡−𝑊𝑑𝑟𝑦

𝑉
∗ 100  

In which 𝑊𝑤𝑒𝑡 is the wet weight, 𝑊𝑑𝑟𝑦 the dry weight, both in 𝑘𝑔, and 𝑉 the volume in 𝑚3. This was 

done for ten samples. The average porosity was calculated to be 44.5. This value was used for the 

entire catchment. 

Hydraulic conductivity: the calculated Ksat based on samples was averaged per field, outliers were 

excluded. To see whether measured values provide results closer to observed in the catchment, Ksat 

values for LISEM run without measured Ksat values were taken from appendix A of the LISEM 

manual. 

Initial soil moisture content this value changes depending on the day the model was run at. This field 

was used in two ways. Either it contains the average Sentinel-1 value of soil moisture for a field on a 

certain day or it contains the average sampled value per field for a certain day.  

Soil depth was set to ten centimetres for the whole catchment. It influences the infiltration potential, 

as deeper soils can retain more water than shallower soils. The value of ten centimetres is a rough 

estimation. Soil in Limburg are deeper but deeper soil do not have a significant impact on the runoff 

of LISEM. 

Figure 92: Out of the Sentinel images, smaller portions the size of individual 
fields were cut 
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Table 2: Example of table that was used as LISEM input 
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4.5 – Modelling ridges 
The objective of a model is to resemble the 

real word as accurately as possible. 

Complete accuracy is really difficult and 

hard to achieve in a study like this since 

there are endless ways to make a model 

more accurate. The opposite of this is a 

model that is too simple and overlooks 

major aspects of the process or catchment. 

An important feature that influences runoff 

a lot is the presence of potato ridges during 

growing season on the main agricultural 

field.  

LISEM makes use of DEM. The DEM that 

was used in LISEM – as well as all other 

data – had a resolution of 5 metres. Each 

cell within the DEM contains a value for its 

height above sea level. A way to build 

barriers is to build them into the DEM. This 

was done by creating features in Arcmap 

with the same direction as ridges, a z-value 

of 0.3 was assigned to each feature.  

Observations in the Catsop catchment shows  ridges following contour lines on the western part of 

field number 2. These ridges rapidly guide the water down to the outlet. To model this in LISEM, one 

ridge was added in the same direction and with the same function as these ridges. A complete 

overview of the ridges can be seen in figure 10.  

 

All area that was no ridge was given value 0. This file was converted to ASCII file format. Nutshell was 

used to convert the ASCII to a .map file and add the z-value of the features to the DEM. This was 

done using the following two commands: 

𝑎𝑠𝑐2𝑚𝑎𝑝 − 𝑎 𝑏𝑎𝑟𝑟𝑖𝑒𝑟𝑠. 𝑎𝑠𝑐 𝑏𝑎𝑟𝑟𝑖𝑒𝑟𝑠. 𝑚𝑎𝑝 − −𝑐𝑙𝑜𝑛𝑒 𝑐𝑙𝑜𝑛𝑒. 𝑚𝑎𝑝 

𝑝𝑐𝑟𝑐𝑎𝑙𝑐 𝑑𝑒𝑚2. 𝑚𝑎𝑝 = 𝑑𝑒𝑚. 𝑚𝑎𝑝 + 𝑏𝑎𝑟𝑟𝑖𝑒𝑟𝑠. 𝑚𝑎𝑝 

This results in a DEM in which the ridges are 

modelled with cells that are 0.3 meters 

higher than the surrounding area. The 

resulting a non-edited DEM and a DEM with 

barriers can be seen in figure 11. This is a 

solution that allows modelling of ridges, 

however it is far from an ideal solution. 

Since the cell size of the DEM is five meters, 

the modelled ridges are immense (5 by 5 by 

0.3 meters) compared to ridges one would 

see in a field. These modelled ridges do have 

a similar effect as normal ridges, namely to 

act as water barriers. The LISEM run with 

Figure 41: Normal DEM and modified DEM to simulate potato 
ridges 

Figure 3: Modelled potato ridges 

Figure 10: Modelled ridges 
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barriers provides flow patterns that look more close to observed patterns than the LISEM run 

without barriers.  

4.6 – Selection of rainfall events 
Three of these rainstorms for which LISEM runs were done were selected. The rainfall data itself 

were obtained from ongoing, unpublished, research in the Catsop area. The nature of the required 

storms has been discussed earlier: they need to be relatively short and relatively intensive so that 

they actually produce measurable runoff. Another criterium that was taken into account is the 

availability of soil moisture data on or around the date of the storm. Table 3 lists the three storms 

that were selected based on this criterium. 

Table 3: Selected rain storms and their characteristics 

Date Total rainfall 
(mm) 

Max. 
intensity  in 5 
minute 
window 
(mm/h) 

Duration 
(hours) 

Qmax 
(L/sec) 

March 15th, 
2019 

24.2 28.8 4:00 140 

May 28th, 
2019 

5.4 19.2 1:08 284 

September 
29th, 2019 

4.2 33.6 0:31 104 

  

4.7 – Rainfall and runoff selection, calculations and comparisons 
A summary of the workflow to get LISEM working for the three rainfall events can be seen in figure 

13. For all three rainstorms, the same data on cohesion, aggregate stability etc. were used. The 

hydraulic conductivity map from figure 23 (see chapter 6) was used for the first run, the literature 

based hydraulic conductivity values (see section 5.6) were used during the second run. Individual soil 

moisture maps were created for each of the three rain storms, these maps are displayed in figure 24 

(chapter 6). Unique rainfall files, that can be found in annex 4 were used for each rain shower. The 

LISEM model was then calibrated to match the recorded runoff of the rain storm as measured by the 

water board. The two parameters in LISEM that were used to calibrate were the multiplication factor 

Ksat slopes and multiplication factor Manning N slopes. The discharge LISEM using the measured 

hydraulic conductivity values and the theory-based hydraulic conductivity values were combined in 

graphs with the discharge measured by the water board, see figure 25 (chapter 6). 
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Figure 53: Schematic of LISEM data workflow for the three selected rain showers 

4.8 – Calibration 
OpenLisem offers a few calibration parameters, of which the Ksat and Manning’s N are the most 

sensitive (De Roo & Jetten, 1999; De Roo, Offermans & Cremers, 1996). The main focus of the 

calibration was to match the peak discharge and the speed at which the outflow decreases after the 

peak discharge.  
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5 Results 
5.1 – Soil moisture data from fieldwork, Sentinel and Campbell sensors 
Soil moisture data from three sources is available. Both the Sentinel and Campbell sensors can 

provide continuous information. The soil sampling provides data on a few specific dates. The average 

soil moisture data in the area as captured by the Sentinel-1 satellite during the year 2019 is shown in 

figure 15. In figures 16 and 17 the mean soil moisture values in the areas surrounding the Campbell 

sensors is plotted for the year 2019. As can be seen from figure 14 and 15, the VWC is quite high 

throughout the whole year, but is lower during the start of the growing season (April – June). 

 

Figure 64: Sentinel average VWC Catsop 2019 

 

Figure 15: Sentinel average VWC at location 1 in 2019 
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Figure 16: Sentinel average VWC location 2 in 2019 

Based on the automatic observations of the Campbell sensors it is also possible to plot a graph of the 

measured SWC during 2019, see figure 17 and 19. These graphs show the daily average soil moisture 

at 5 and 20 cm depth. The data are averages per day and days or periods with no data were 

removed. 

 

Figure 17: Campbell sensor SWC at location 1 in 2019 

When data from the Campbell sensors at locations 1 and the Sentinel averages for location 1 and 2 

are combined, the result can be displayed in figure 18 and 20. These are again daily averages. As can 

be seen in figure 17, location one has little days where both Sentinel and Campbell contain 

measurements. Both Campbell and Sentinel seem to follow the same trend. In figure 20 some larger 

differences between Sentinel and Campbell can be seen, especially as the growing season 

progresses. 
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Figure 18: Combined Sentinel and Campbell SWC at location 1 

 

Figure 19:Campbell sensor SWC at location 1 in 2019 
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Figure 20: Combined Sentinel and Campbell SWC at location 2 

Based on these graphs the correlation r and 𝑟2 between Sentinel and Campbell sensors were 

calculated. The Sentinel data of location 1 were coupled to the 5cm and 20cm Campbell sensor data 

of location 1. The same was done for location 2. The results can be seen in figure 21. 
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Figure 7: Correlation of VWC between Sentinel and Campbell sensors at Location 1 (upper graphs) and location 2 (lower 
graphs). Outliers not yet excluded. 

From these results it is clear that no relationship can be found between the location 2 Sentinel and 

Campbell sensors data. Both 𝑟 = 0.04 and 𝑟 = 0.2449 are low values indicating no significant 

relationship between the two. The Sentinel images of location 1 and the values of the Campbell 

sensors seem to better correlate with 𝑟 values of 0.86 and 0.85 for 5 and 20 cm Campbell sensors 

respectively.  

Using the Sentinel data as modelled output and the soil sensor measurements as observed output, it 

is possible to calculate the Nash Sutcliffe coefficient. In table 4, the NSE for Sentinel 1 data compared 

to in-field soil moisture measurements can be seen.  

Table 4: Nash Sutcliffe coefficient and RMSE for Sentinel and observed soil moisture data 

Modelled data Sentinel loc1 Sentinel loc1 Sentinel loc2 Sentinel loc2 

Observed data Campbell loc1 5cm Campbell loc1 
20cm 

Campbell loc2 
5cm 

Campbell loc2 
20cm 

NSE 0.89 0.85 -0.16 0.21 

RMSE 0.04 0.05 0.14 0.13 

 

These results indicate a moderately good match between the Sentinel and observed data at location 

1. The negative values for location two indicate that Sentinel data is not as good as observed data. 

In order to compare the satellite imagery with measured values, another possibility is to look at the 

fieldwork soil moisture values per field and compare them to the Sentinel average values for the 

same field on the same day. Unfortunately, there are no Sentinel data on the exact dates of fieldwork 

since not every day or even every pass-by of Sentinel produces a usable image. table 5 gives an 

overview of the available Sentinel data and precipitation around the fieldwork data (the thick-boxed 

dates) 
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Table 5: Rainfall and Sentinel data availability. Source: KNMI, station Beek 

Date Rainfall 
(mm)* 

Sentinel-
image 

                  OCTOBER FIELDWORK 

1-10-19 7.2 NO 

2-10-19 19.3 YES 

3-10-19 7.2 NO 

NOVEMBER FIELDWORK  

4-11-19 2.8 NO 

5-11-19 3.3 NO 

6-11-19 3.4 NO 

7-11-19 1.2 YES 

8-11-19 2.1 NO 

MARCH FIELDWORK  

28-02-20 13.90 NO 

29-02-20 3.90 NO 

1-03-20 2.70 YES 

2-03-20 2.50 NO 

3-03-20 7.90 NO 

4-03-20 0.40 NO 

5-03-20 1.30 NO 

6-03-20 16.40 NO 

7-03-20 4.00 YES 

*Source: KNMI, station Beek 

 

As mentioned before, the Sentinel passes over the study area every three days. The only direct 

match with a fieldwork date is October 2nd, 2019. The large amount of time between satellite passing 

and fieldwork, and the rain that fell in that time makes comparing the collected soil moisture data 

from the November and March fieldwork impossible. Table 6 gives the comparison between the 

Sentinel and measured SWC values in October, November and March. 

Table 6: Comparison between measured and Sentinel soil moisture content 

# Land use NOV_FW* NOV_SENT* OCT_SENT OCT_FW MAR_SENT MAR_FW 

1 Cropland 34 29 41 21 32 38 

2 Cropland 32 36 36 17 32 35 

3 Grassland 40 25 29 21 32 50 

4 Fruit orchard 33 29 26 25 36 39 

5 Cropland 31 31 31 18 34 35 

6 Cropland 31 37 37 20 32 N/A 

7 Cropland 31 34 25 22 31 32 

8 Cropland 35 31 33 22 31 N/A 

9 Grassland 35 28 32 26 35 N/A 

10 Grassland 40 31 25 25 31 61 

11 Tree nursery 33 28 31 25 32 N/A 

12 Grasland 40 25 24 24 33 N/A 

13 Grassland 40 31 29 24 31 N/A 

60 Woodland 40 25 20 24 34 N/A 
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60 Woodland 40 28 30 24 38 N/A 

70 Grassland 40 33 30 24 39 N/A 

70 Grassland 40 32 33 24 31 N/A 

*FW means fieldwork data, SENT means Sentinel data 

Since there are several days with precipitation between the November and March fieldwork and 

Sentinel passes, the only date on which Sentinel soil moisture values can be compared to sampled 

values is October 2nd, 2019. The result of this comparison can be seen in figure 22. 

  
Figure 22: Comparison of average soil moisture per field from manual sampling and Sentinel 

5.2 – Soil moisture and hydraulic conductivity maps 

5.2.1 – Literature-based hydraulic conductivity values 
One of the goals of this paper is to compare measured hydraulic conductivity to values of that same 

variable that would otherwise be obtained from other sources. In other words: what would a 

literature-based hydraulic conductivity value for this catchment be and does it produce different 

results compared to the measured values. 

Since hydraulic conductivity depends on the type of soil, the first step is to find the soil type in the 

catchment. Using the Bodemfysische Eenheidskaart from 2012, the soil type in the catchment was 

defined as silty loam (Wösten, et al., 2013). In the Staringreeks, this is called soil type B14 (silty loam) 

with a hydraulic conductivity value of 0.9 cm/day (fitted, not measured). However, from all the B14 

sampling locations in this Staringreeks, there is a large difference in hydraulic conductivity ranging 

between 0.02 to 99 cm/day. Even on sampled locations that are labelled with the same coordinates, 

large differences in hydraulic conductivity occur (Heinen, Bakker, & Wösten, 2018). Other research 

found hydraulic conductivity values for the B14 soil type to be 34.5 and 133.5 cm/day. The locations 

of measurements I this research are – unfortunately – not documented. (Bakker, Heinen, de Groot, 

Assinck, & Hummelink, 2018). The problem of hydraulic conductivity values being not well 

documented is already described in older studies as well, these studies established a hydraulic 

conductivity of 1mm/hour for farmland and 3mm/h grasslands (Smith, Goodrich, & Unkrich, 1999; De 
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Roo & Jetten, 1999). Since this last study was in the same catchment and the values of 1 and 3mm 

respectively fall within mentioned values of the Staringreeks and Bodemfysische Eenheidskaart, 

these values were used for the Catsop catchment for comparison against the measured hydraulic 

conductivity.  

5.2.2 – Hydraulic conductivity based on sampling 
Based on the Ksat measurements, a 

map for the Ksat per field (averaged 

when more than one sample per 

field was taken) was made, see 

figure 23. As can be seen, the 

highest values were found in the 

fruit orchard and grass fields. The 

lower values were found on land 

used for agriculture. The black piece 

of land is a farm that has a paved 

compound 

 

 

 

 

 

 

 

 

 

 

 

5.3 – LISEM run results for three rain storms 
As mentioned in the methods chapter, three rain storms were used for the LISEM modelling. For 

each of these storms, a theta-I map based on Sentinel data was created containing average soil 

moisture values per field on the day before the storm, the soil average soil moisture per field is 

displayed as a percentage of the porosity (0.445). The resulting maps can be seen in figure 24 on the 

next page.  

 

Figure 8: Hydraulic conductivity (mm/hour) 
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Figure 24: Average Volumetric Water Content obtained from Sentinel  per field for the three selected rain showers 
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The LISEM calibration settings and the Ksat ranges that were used for the three rainfall events can be 

seen in table 7. The ranges for Ksat values are given, the exact values for manual sampled runs can 

be found in figure 23. The literature based Ksat values can be found in section 5.2.1 The hydrographs 

of the three rainfall events can be found in figure 25. The absolute values of Manning’s N were not 

changed for each of the runs. They have a range between 0.001 for the agricultural fields and 

grassland and 0.1 for the fruit orchard. Manning’s N for roads was set as low as possible. 

Table 7: Comparison of LISEM settings for manual and literature based Ksat samples 

 March 15th May 28th September 29th 

Manually sampled Ksat values (run 1, for exact Ksat values) 

Ksat range [min,max] (mm/h) [40.83, 828.2] [40.83, 828.2] [40.83, 828.2] 

Ksat calibration factor (-) 0.04 0.01 0.03 

Manning's N calibration factor (-) 0.50 0.01 0.01 

Litarature based Ksat values (run 2) 

Ksat range [min, max] (mm/h) [1, 3] [1, 3] [1, 3] 

Ksat calibration factor (-) 1.60 0.40 1.20 

Manning's N calibration factor (-) 0.50 0.01 0.01 

 

As can be seen in figure 25, the LISEM runs mostly result in less total runoff than measured in the 

field. For the showers in May and September using the literature Ksat values, it is possible to better 

approximate observed values. 
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Figure 9: Comparison of hydrographs for three rainfall events 
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6 Discussion  
This research showed that it is possible to compare Sentinel and in situ measurements to achieve 

relatively good statistical results in specific conditions. This corresponds to other research in the 

Netherlands that was able to get good results in this way (Benninga, et al., 2018). The Ksat values 

that were found show that local circumstances cause this value to change on a local scale, like other 

research suggests as well (Mahapatra, et al., 2020; Shao & Baumgartl, 2014). Despite the results, 

there are still points to improve and reflect on in future research. These will be elaborated on in the 

continuation of this chapter. 

6.1 – Comparing in situ and Sentinel soil moisture measurements 
The Sentinel-1 satellite provides soil moisture information in a relatively constant way. It provides 

this info every three days in minimum. Sometimes images cannot be retrieved, limiting the usability 

to once every six days. This is a high temporal scale compared to manual sampling, but cloudy 

conditions contribute to the fact that the three day interval is not always achieved. 

Sampling soil moisture with semi-permanent soil moisture sensors as was done with the Campbell 

sensors has the potential to provide a good dataset against which the Sentinel-1 measurements can 

be validated. Unfortunately, the performance of the Campbell sensors and Sentinel-1 over the course 

of the study period was not optimal. This is due to a number of reasons: 

- The Sentinel-1 satellite measures very high values of soil moisture in the months June to 

September. The 2019 summer period was dryer than normal and featured a rainfall shortage 

of 100mm in the end of June up to nearly 200mm in the study area on September 15th, as can 

be seen in figure 26. This does not stroke with the Sentinel observations indicating a soil 

moisture content of around 0.35 in the same period compared to an estimated porosity of 

0.40-0.45. This effect could be due to vegetation influences on Sentinel. Other research 

Figure 2610: Developing cumulative rainfall shortage (mm) in the Netherlands during 2019. Top left: June 2nd, top middle: 
August 1st, top right: August 11th, bottom left: August 31st, bottom middle: September 12th and bottom right: September 
30th. Source: KNMI 
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reports Sentinel being sensitive to crops with a high canopy density and resulting in higher 

VWC values (Vreugdenhil, et al., 2018); 

- The Campbell sensors data contains large data gaps. Measurements done at the southern 

location (location 1) for example only contained 22 days in the period February-August. 

Since most rainfall events that produce erosion and significant runoff occur during the summer, it is 

crucial that Sentinel soil moisture observations during the summer can be linked to in situ 

measurements. That way, the satellite can be used to accurately estimate soil moisture content in 

the catchment at any time. One could argue that the comparison done in this paper is too shallow: 

why not compare Sentinel to in situ measurements for a year (including winter) or longer? This was 

not possible due to the data of the Campbell sensors, which roughly cover 2019 and the first month 

of 2020. Still, there is some data in the months November 2019 – January 2020 which could be used. 

The outcome could be either positive (correlation between Campbell sensors and Sentinel-1 is found) 

or negative (no correlation found). In the first case, that would mean that Sentinel observations done 

during the winter months can accurately be used to predict soil moisture content. Its result would 

and could not be that all Sentinel measurements throughout the whole year can be used, since the 

data during growing season shows non-realistic patterns compared to measured data. The next step 

would be to show the effect of vegetation during winter (think of cover crops) on the Sentinel 

observations. As mentioned before, this vegetation effect on Sentinel 1 is not worked out yet. This is 

something future research should aim to solve. 

It is, however, possible to use SAR based satellites (of which Sentinel-1 is one) for monitoring of soil 

moisture content. Studies conducted with the forerunners of Sentinel-1 have demonstrated this (van 

der Velde, et al., 2012 & Kornelsen & Coulibaly, 2013). Studies done more recently using Sentinel 

have also proven that Sentinel can be used. These studies also report the not yet solved problem of 

vegetation during the growing season influencing the Sentinel measurements (Benninga & Pezij, 

2019, Carranza et al., 2019, Alexakis et al., 2017 & Gruber et al., 2013).  

Statistical tests as done in the results chapter are possible and provide insight into the correlation 

between two datasets. It is important to realise that the weight of this is relative since the n is low, 

either 15 for location 1 or 30 for location 2 over the span of half a year. A prime example of this is the 

two outliers in the location 1 correlation data that turn out to influence the outcome of r and 𝑟2 a 

lot. It could be that there seems no relationship now but in fact there is one or vice versa if the 

number of data points increases. So the statistics do say something, but they don’t tell the whole 

story. In order to do more robust statistical statements, more in situ measurement data is needed. 

This could also be the reason that the NSE is quite high sometimes whilst other statistical parameters 

indicate no correlation; maybe NSE is more or less vulnerable to a smaller n. 

6.2 – High variability in Hydraulic conductivity measurements 
Although sampling and measuring Ksat is well documented, it seems tricky to get consistent accuracy 

in the values. This can be due to a number of reasons. The first reason is that – especially with wet 

clayish soils – it is important to minimize stress on the soil after taking it from the field. Pressure on 

the soil could lead to compaction and alter Ksat values of the soil. It is also important to accurately 

prepare and measure the soil in the lab. Potatoes (that rot over time and when they do so leave large 

‘gaps’ in the sample) and macropores in the soil can lead to higher Ksat values being measured. Both 

of these phenomenon were encountered in multiple samples. This is in line with other research that 

is suggesting the impact of vegetation and macropores on Ksat and its spatial variability is way larger 

than the change that occurs by soil difference (Mahapatra, et al., 2020; Shao & Baumgartl, 2014). 

Furthermore, there are multiple methods of measuring hydraulic conductivity, which also lead to 
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different results. Because of time and resource limitations, the method in this paper was chosen. 

Another method might be more accurate and less prone to large variations (Bakker, Heinen, de 

Groot, Assinck, & Hummelink, 2018). 

6.3 – Modelling reality? Calibration factors 
Another point of concern is the working of LISEM as a model and its implementation by the 

OpenLisem software. The software remains a work in progress, where consecutive versions will 

produce roughly ten times much runoff for the same input. This of course has to be taken into 

account. Another known issue with LISEM is that water is not flowing through the catchments as 

quickly as it should. This problem is currently being addressed by the developer of the OpenLisem 

software. This problem where the water is flowing slower than it should is likely to have a huge 

impact on research related to hydraulic conductivity, like this one. When the water is flowing at a 

slower speed, it has more time to infiltrate and therefore more water will infiltrate. The effect of 

measuring hydraulic conductivity as was done in this research can be destroyed when the water 

flows too slow and too much infiltrates. 

Every model has the possibility to calibrate to get to the final result. So does LISEM. The results from 

the three rainstorms indicate a certain degree to which the modelled and measured outcomes 

compare. From the graphs it looks like the comparisons between the modelled and observed 

discharge are not that far off. However, the calibration that was needed to obtain these results was 

quite big. As can be seen in the results chapter, the two calibration ‘buttons’ used were the 

Manning’s N and the Ksat multiplication factor.  

The Manning’s N had to be set to unrealistic low values (order of magnitude 10−4) to obtain the 

results for both the literature- and manually obtained Ksat values. The Manning’s N used is several 

orders of magnitude smaller than the ones indicated in for example the LISEM manual (Jetten, 2018). 

Since the Manning’s roughness is related to how fast water moves through the catchment, this is 

likely the correction to the LISEM-related problem of water flowing too slow as described in 8.3. 

Calibrating in this way it’s not entirely possible to solve the problem, because at a certain point the 

Manning’s N values cannot be set lower because of model limitations. 

The Ksat multiplication factor had to be set to a very small number to be able to accurately model 

the discharge to match the recorded discharge from the water board. The values that were used for 

the manually obtained hydraulic conductivity were not completely unrealistic but were rather low, 

around 0.4 mm per hour, which is more or less on the low side with what several studies find for this 

type of soil (Heinen, Bakker, & Wösten, 2018; Wösten, Veerman, & Stolte, 1994). Note that other 

values such as 20mm/hour are also values that occur in literature, there is large variation within the 

values that are available. The Ksat values that were obtained from literature are still on the low side 

for LISEM to get close to the measured output, which can be seen in the multiplication factor Ksat. 

This factor needed to be set bigger than 1 when working with the literature Ksat values to obtain 

more or less the same results as the measured runoff. This indicates that the Ksat value for which no 

calibration is needed, would be around 1.2-1.6mm/hour for farmland and 3.6/4.2mm/hour for 

grassland. This would bring the hydraulic conductivity close to the 9cm/day (3.75mm/hour) of the 

Staringreeks (Wösten, Veerman, & Stolte, 1994). 

So, calibration was very strong to arrive at somewhat acceptable results and no further calibration 

was possible due to the very low numbers that LISEM cannot handle. This is also the reason that no 

numerical (e.g. using NSE) interpretation was given to the LISEM output. This could be done, but the 

numbers would be somewhat of a façade. For example, say the hydrographs comparison between 

LISEM and the values measured by the water board would result in an NSE of 0.90 with a Manning’s 
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N and Ksat calibration factor of 0.01, what would this 0.90 tell you? The catchment was modelled in a 

way not remotely like reality, so this value would lead to misinterpretation of the results.   

It could be, however, that newer versions of LISEM, where water flow through the catchment is 

faster, could yield different results. As a result of faster water flow and less infiltration time, the Ksat 

values that were measured could yield results that are less far off and need less calibration. Fact is 

that the current manual measurements of Ksat seem to be orders of magnitude off, something that 

is unlikely to completely change with faster water flow. It’s also good to note that understanding the 

concepts and relation between connectivity within the catchment and the effect of calibrating with 

Manning’s N and hydraulic conductivity is difficult, since these two factors are very sensitive 

parameters of the LISEM model (Wei, Dongli, Ming'an, Kwok, & Bingsheng, 2015). 
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7 Conclusions 
7.1 – Comparing satellite and in situ measurements of soil moisture 
Statistical analysis of the Sentinel and Campbell data indicates that the two datasets do have no 

significant correlation. The only weak correlation found (after outliers were excluded) is the Sentinel-

1 on location 1 compared to the 20cm soil moisture values on that same location. Table 8 

summarizes the results 

Table 8: Summary statistics of Sentinel-1 and Campbell data comparison 

 Sentinel loc 1 & 
Campbell loc 1 5cm 

Sentinel loc 1 & 
Campbell loc 1 20cm 

Sentinel loc 2 & 
Campbell loc 2 5cm 

Sentinel loc 2 & 
Campbell loc 2 20cm 

R 0.86 0.85 -0.24 -0.04 

𝑹𝟐  0.73 0.72 0.06 0.01 

NSE 0.89 0.85 -0.16 0.21 

RMSE 0.04 0.05 0.14 0.13 

 

The only comparison between Sentinel and Campbell sensors that has an 𝑅 > 0.85, which in 

statistics is considered a fairly strong relationship, see (Rumsey, 2009, p.59), is location one with 

20cm depth values of soil moisture.  

As can be seen in table 8, the RMSE is quite high for the location 2 comparison. This is also what can 

be seen in the regression graphs in figure 21 (chapter 6), the points are farther apart from the 

trendline. Points in location 1 are more close to the trendline which indicate better model fit.  

To conclude, based on the results the Campbell sensor on location 1 could best be used to calibrate 

the Sentinel-1 soil moisture content. Especially during the growing season when Sentinel is 

vulnerable to wrong measurements due to vegetation cover. Unfortunately, the Campbell sensor at 

location 1 also has the lowest number of observations (𝑛 = 22) on a very limited timescale. The 

other Campbell measurement values and Sentinel data are too far off and are not suitable for this 

purpose.  

7.2 – Measured versus literature based hydraulic conductivity and the effects on model 

output 
The results from the three rain showers as presented in chapter 6 show that it is possible to get 

reasonably close to measured runoff. Therefore, it is almost impossible to determine a realistic 

hydraulic conductivity value for this catchment (or soil type within the region of the catchment).  

The hydraulic conductivity values of 1mm/hour and 3mm/hour for cropland and grassland 

respectively as found in the literature seem to get the LISEM model closer to observed runoff. That is, 

with less dramatic calibration needed. Still, the Manning’s N value needs to be set quite low. The 

value at which little calibration is needed will be somewhere around 1.2-1.6mm/hour for farmland 

and 3.6-4.2mm/hour for grassland. This is based on the multiplication factor of Ksat that is still 

needed when considering the literature based values. 

Ksat values obtained through manual sampling in this and other studies result in a wider range of 

values for different land uses compared to literature. At the moment it is only possible to use 

manually obtained Ksat values to run LISEM with lots of calibration effort. This may improve in the 

future as the model is further developed.  
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Annex 1 – The Sentinel-1 soil moisture script 
//Basic settings 

var EXPORT_image = true;  

var EXPORT_table = false;  

var MOSAIC = true;       

var SAT_5cm = ee.Image("users/hjbenninga/BOFEK2_1_VGE_SAT_5cm"); 

var WP_5cm = ee.Image("users/hjbenninga/BOFEK2_1_VGE_WP_5cm"); 

Map.centerObject(catsop, 14); 

var SCALE = 5;          //scale [meter] of exported image and table 

var Area = catsop;          //area over which statistics are calculated 

var Area_small = catsop;  //area that is covered with imagery in the output 

var Date_image = ee.Date('2019-05-26T00:00:00');  

 

//LOADING OF SENTINEL-1 

//Load Sentinel-1 C-band SAR ground range collection (log scaling, VV co-polar) 

var collection_S1_TOTAL = ee.ImageCollection('COPERNICUS/S1_GRD').filterBounds(Area) 

  .filter(ee.Filter.listContains('transmitterReceiverPolarisation','VV')) 

  .filter(ee.Filter.eq('instrumentMode','IW')) 

  .filterDate('2016-01-01', Date.now()) 

  .filter(ee.Filter.eq('resolution_meters', 10)); 

var collection_S1_STATS = collection_S1_TOTAL.filterDate('2016-01-01','2020-03-04'); //statistics are 

calculated over the selected time period 

 

//INCIDENCE ANGLE CORRECTION 

var n=2;                //normalization coefficient 

var angle_ref = 37.5;   //reference angle 

 

//define incidence angle correction function 

var incidence_angle_correction_function = function(image) { 

  var image_m2m2 = image.expression( 

    '10**(image/10)',{ 
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      'image': image.select('VV') 

    }); 

     

  var image_m2m2_cor = image_m2m2.expression( 

    'sigma0*((cos(pi/180*angle_ref)**n)/(cos(pi/180*angle)**n))',{ 

      'n': n, 

      'angle_ref': angle_ref, 

      'sigma0': image_m2m2, 

      'angle': image.select('angle'), 

      'pi': Math.PI 

    }); 

     

  var output_image = image_m2m2_cor.expression( 

    'log10(sigma0_cor)*10', { 

      'sigma0_cor': image_m2m2_cor 

    }); 

   

  return output_image.set('system:time_start', 

image.get('system:time_start')); 

}; 

 

//apply incidence angle correction function 

var collection_S1_STATS_IC_cor = collection_S1_STATS.map(incidence_angle_correction_function); 

var collection_S1_TOTAL_IC_cor = collection_S1_TOTAL.map(incidence_angle_correction_function); 

 

//MASK SENTINEL-1: VALID OBSERVATION VALUES 

var min_value = -20; 

var max_value = -2; 

var min_coverage_ratio = 0.75;    
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//Define making function 

var valid_values_mask_function = function(image) { 

  var lower_mask = image.gte(min_value); 

  var new_img = image.updateMask(lower_mask); 

   

  var upper_mask = new_img.lte(max_value); 

  var new_img2 = new_img.updateMask(upper_mask); 

   

  return new_img2.set('system:time_start', 

image.get('system:time_start')); 

}; 

 

//apply threshold values to image collections 

var collection_S1_STATS_IC_cor = collection_S1_STATS_IC_cor.map(valid_values_mask_function); 

var collection_S1_TOTAL_IC_cor = collection_S1_TOTAL_IC_cor.map(valid_values_mask_function); 

 

//MASK SINTINEL-1 : COVERAGE OF A PIXEL 

//Determine ratio of images  

var count_collection_TOTAL = collection_S1_TOTAL_IC_cor.reduce(ee.Reducer.count()); 

var count_collection_TOTAL_masked = collection_S1_TOTAL_IC_cor.reduce(ee.Reducer.count()); 

var count_collection_STATS = collection_S1_STATS_IC_cor.reduce(ee.Reducer.count()); 

var count_collection_STATS_masked = collection_S1_STATS_IC_cor.reduce(ee.Reducer.count()); 

 

var valid_coverage_STATS_ratio = count_collection_STATS_masked.divide(count_collection_STATS); 

var valid_coverage_TOTAL_ratio = count_collection_TOTAL_masked.divide(count_collection_TOTAL); 

 

//Apply filter of min_coverage_ratio 

var collection_S1_STATS_IC_cor_Masked2 = collection_S1_STATS_IC_cor.map(function(img) { 

  var mask = valid_coverage_STATS_ratio.gte(min_coverage_ratio); 

  var new_img = img.updateMask(mask); 

  return new_img;}); 
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//CHANGE DETECTION STATISTICS 

collection_S1_STATS_IC_cor_Masked2.reduce(ee.Reducer.max()); // Maximum in each pixel 

collection_S1_STATS_IC_cor_Masked2.reduce(ee.Reducer.min()); // Minimum in each pixel 

//Get stats as input to change detection 

var max_collection = collection_S1_STATS_IC_cor_Masked2.reduce(ee.Reducer.percentile([97.5]));  

//97.5% percentile to exclude outliers 

var min_collection = collection_S1_STATS_IC_cor_Masked2.reduce(ee.Reducer.percentile([2.5]));   

//2.5% percentile to exclude outliers 

 

//RETRIEVE A RELATIVE SOIL MOISTURE INDEX 

//define change detection function 

var change_detection_function = function(image) { 

  var output_image = image.expression( 

    '(s1_im - s1_min)/(s1_max - s1_min)',{ 

      's1_im': image, 

      's1_min':min_collection, 

      's1_max': max_collection, 

  }); 

  return output_image.set('system:time_start', 

  image.get('system:time_start')); 

  }; 

 

//apply change detection 

var cd_s1 = collection_S1_TOTAL_IC_cor.map(change_detection_function);  

//cd_s1 indicates the relative saturation of the soil as a value between 0 and 1 

 

//RETRIEVE VOLUMETRIC SOIL MOISTURE 

var WP_SAT_scale_function = function(image) { 

  var output_image = image.expression( 

    '(MAX - MIN) * index + MIN', { 

      'index': image, 

      'MIN': WP_5cm, 
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      'MAX': SAT_5cm, }); 

 

return output_image.set('system:time_start', image.get('system:time_start'));}; 

 

//Apply scaling between WP and SAT 

var cd_s1_volumetric = cd_s1.map(WP_SAT_scale_function); 

print(cd_s1_volumetric,'Image collection of volumetric soil moisture maps'); 

 

//CD_S1_volumetric map 

//Map.addLayer(cd_s1_volumetric); 

 

//MAPS AND GRAPHS 

//Map display - mosaic images on same day that cover Area_small 

if (MOSAIC === true) { 

  var date_object = 

ee.Date(ee.Image(cd_s1_volumetric.filterDate(Date_image,Date.now()).filterBounds(Area_small).firs

t()).get('system:time_start')); 

  var cd_s1_volumetric_date = 

ee.ImageCollection(cd_s1_volumetric.filterDate(date_object,date_object.advance(1,'day')).filterBou

nds(Area_small)); //select images that cover area of interest on/after date image 

  var image1 =  ee.Image(cd_s1_volumetric_date.first()); 

  var date_image1 = ee.Date(image1.get('system:time_start')); 

  var cd_s1_volumetric_date_image = cd_s1_volumetric_date.mosaic().set('system:time_start', 

date_image1); 

  var cd_s1_volumetric_date_image_Study_area = cd_s1_volumetric_date_image.clip(Area_small); // 

Clip to image to area of interest 

  print(cd_s1_volumetric_date_image_Study_area,'Mosaiced image covering the area of interest on 

date of interest'); 

  print(cd_s1_volumetric_date_image,'Mosaiced image covering the area of interest on date of 

interest'); 

} else { 

  var cd_s1_volumetric_date_image = 

ee.Image(cd_s1_volumetric.filterDate(Date_image,Date.now()).filterBounds(Area_small).first()); 

//Select first image that covers area of interest on/after Date_image 
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  var cd_s1_volumetric_date_image_Study_area = cd_s1_volumetric_date_image.clip(Area_small); // 

Clip to image to area of interest 

  print(cd_s1_volumetric_date_image_Study_area,'First image covering the area of interest on date 

of interest');} 

 

//ADD LAYERS TO MAPS 

Map.centerObject(catsop, 14); 

Map.addLayer(SAT_5cm, {minL:0, max:0.7, opacity:1, palette: ['ff1c05', 

'fff705','4dff03','07ffe8','0501ff']}, 'saturation soil moisture [m^3/m^3'); //Add map with saturation 

soil moisture 

Map.addLayer(WP_5cm, {min: 0, max: 0.7, opacity:1, palette: ['ff1c05', 

'fff705','4dff03','07ffe8','0501ff']}, 'Wilting point soil moisture [m^3/m^3]'); // Add map with wilting 

point soil moisture 

var valid_coverage_ratio_Study_area = valid_coverage_STATS_ratio.clip(Area_small); 

Map.addLayer(valid_coverage_ratio_Study_area, {min: 0, max: 1, opacity: 1, palette: 

['LightBlue','blue']}, 'Ration of valid values'); 

 

//map soil moisture image 

Map.addLayer(cd_s1_volumetric_date_image_Study_area, {min: 0, max: 0.7, opacity:1,palette: 

['ff1c05', 'fff705','4dff03','07ffe8','0501ff']}, 'Volumetric soil moisture [m^3/m^3]'); 

 

//Plot figure soil moisture in time 

var SoilMoisture_mean_TimeSeries = ui.Chart.image.series(cd_s1_volumetric, Area_small, 

ee.Reducer.mean(), SCALE).setOptions({ 

  hAxis: {title:'Date'}, 

  vAxis: {title:'Volumetric soil moisture'}  }); 

print(SoilMoisture_mean_TimeSeries,'Time series of mean soil moisture for the area of interest'); 

var SoilMoisture_count_TimeSeries = ui.Chart.image.series(cd_s1_volumetric, Area_small, 

ee.Reducer.count(), SCALE).setOptions({ 

  hAxis:{title:'Date'}, 

  vAxis:{title:'Number of pixels'}}); 

print(SoilMoisture_count_TimeSeries,'Time series of number of pixels for the area of interest'); 
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//EXPORT A TABLE AND IMAGE 

var date_object = ee.Date(cd_s1_volumetric_date_image_Study_area.get('system:time_start')); 

var date_string = date_object.format('YYYYMMdd_HHmm'); 

if (EXPORT_table === true) { //// From: https://gis.stackexchange.com/questions/274569/exporting-

table-in-to-a-drive-from-google-earth-engine-returns-blank-rows 

  var cd_s1_volumetric_Area_small = 

ee.ImageCollection(cd_s1_volumetric.filterBounds(Area_small)); // Select images that cover area of 

interest 

  var reducers = ee.Reducer.mean().combine({ //combine the mean and count 

    reducer2: ee.Reducer.count(), 

    sharedInputs: true 

  }); 

  var Region_table = cd_s1_volumetric_Area_small.map(function(img) { 

    return img.reduceRegions({ 

      collection: Area_small, 

      reducer: reducers, 

      scale: SCALE 

    }).map (function(f){ 

      return f.set('Date', ee.Date(img.get('system:time_start'))); 

    }); 

  }).flatten(); 

  print(Region_table.limit(20),'Feature table: first # elements in time series'); 

  Export.table.toDrive({ 

    collection: Region_table, 

    description: 'ResultsTable_area_of_interest' + date_string.getInfo(), 

    selectors:(['Date','Mean','Count']), 

    }); 

    print('See tab Tasks to start exporting a table with mean and number of pixels for area of interest'); 

} 

else { 

  print('No table export (see variable EXPORT table'); 

} 
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//Export the image 

print('Timestamp image: ', date_string); 

if(EXPORT_image === true) { 

  Export.image.toDrive({ 

    image: cd_s1_volumetric_date_image_Study_area, 

    description: 'Vol_SoilMoisture' + date_string.getInfo(), 

    scale: SCALE, //In meters, specified in line 11 

  region: Area_small 

  }); 

  print('See tab Tasks to start exporting a soil moisture map for area of interest'); 

} else { 

  print('No image export (see variable EXPORT_image)'); 

  } 
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Annex 2 – November fieldwork layout form 
General    

Date   

Time   

Sample location   

Sample number   

    

TDR measurements First Second Third 

Values at point 1       

Values at point 2       

Values at point 3       

Values at point 4       
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Annex 3 – The PCraster script 
#comments start with a hashtag  
#! --matrixtable --lddin --clone clone.map 
###################################################  
# PCRASTER script to build a LISEM input database #  
# made by Meindert Commelin 06/02/2019            #     
################################################### 
binding  
################## 
### INPUT MAPS ###  
################## 
dem = dem.map; # digital elevation model, area must be <= clone 
lu = lu.map; # field id's for land use  
# roads = roads.map; # location of roads value = 1 
# grass = grasswid.map; # only if buffers are included 
surface = catch.map; # field id's for texture/soil map 
# chanmask = chanmask.map; # location of channels value = 1 (optional) 
####################  
### INPUT TABLES ###  
####################  
# There are two tables which combine with either land use or soil/geology. 
# Choose for each of the following 15 parameters in which table it belongs. 
# renumber the paramaters for each table (see example basic script) 
# unittblsoil = surface.txt;  
# table with soil parameters for each field id  
unittbl = lookup_tbl.txt; 
# table with crop and land use parameters for each field id   
# 
# 01 rr (cm) = random roughness 
# 02 n = Manning's n 
# 03 stonefraction (ratio) 
# 04 coh (kPa) = cohesion of soil 
# 05 aggregate stability (number)   
# 06 D50 (µm) 
# 07 ksat (mm/h) 
# 08 psi initial (cm) 
# 09 thetas (cm3/cm3) = porosity    
# 10 thetai (cm3/cm3) = initial moisture content 
# 11 soildepth (cm) 
# 12 per (fraction) = surface cover by vegetation 
# 13 lai (m2/m2) = leaf area index 
# 14 ch (m) = crop height 
# 15 cohadd (kPa) = additional cohesion by roots 
#######################  
### INPUT CONSTANTS ### 
#######################  
# channel properties:  
# NOTE: if channels with different parameters, use a table as with land use. 
# Chanwidth = 2; # width of channels in meters  
# Chanside = 0; # tan of angle between side and surface (0 = rectangular) 
# Chanman = 0.2; # Manning's n in channel 
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# Chancoh = 10; # high cohesion, kPa  
# ChanKsat = 20; # channel ksat for infiltration 
# roads: 
# widthroads = 6; # width of roads in meters 
################### 
### PROCES MAPS ### 
################### 
area = area.map; # value = 1 
################### 
### OUTPUT MAPS ###  
################### 
### rainfall map ### 
rain_id = id.map; # only if >1 rainfall zones --> not needed I assume 
### basic topography related maps ### 
grad = grad.map; # slope gradient 
Ldd = ldd.map; # Local Drain Direction   
outlet = outlet.map; # location outlets and checkpoints  
outpoint = outpoint.map; # outlet points subcatchments 
### land use maps ### 
per = per.map; # surface cover by vegetation 
lai= lai.map; # leaf area index 
ch = ch.map;  # crop height 
roadwidth = roadwidth.map; 
# grass = grasswid.map; # width of grass strips (optional) 
# smax = smax.map; # max canopy storage (optional) 
### surface maps ### 
rr = rr.map; # random roughness 
mann = n.map; # Manning's n 
stone = stonefrc.map; # stone fraction  
# crust= crustfrc.map; # crusted fraction of surface (optional) 
# comp = compfrc.map; # compacted fraction of surface (optional) 
# hard = hardsurf.map; # impermeable surface (optional) 
### erosion maps ###  
coh = coh.map; # cohesion of the soil 
cohadd = cohadd.map; # additional cohesion by roots 
aggrstab = aggrstab.map; # aggregate stability 
D50 = d50.map; # median texture size 
### infiltration maps ### 
# for G&A 1st layer: 
ksat= ksat1.map;  
psi= psi1.map;  
pore= thetas1.map;  
thetai= thetai1.map;  
thetas= thetas1.map; 
soildep= soildep1.map;  
# for G&A 2nd layer: (optional) 
# ksat2= ksat2.map;  
# psi2= psi2.map;  
# pore2= thetas2.map; 
# thetai2= thetai2.map;  
# soildep2= soildep2.map; 
### channel maps ### (optional) 
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# lddchan = lddchan.map;  
# chanwidth = chanwidt.map;  
# chanside = chanside.map; 
# changrad = changrad.map;  
# chanman = chanman.map;  
# chancoh = chancoh.map; 
### channel infiltration ### (optional) 
# chanksat = chanksat.map; 
initial  
#################### 
### PROCESS MAPS ### 
#################### 
area = dem * 0 + 1; 
########################### 
### MAPS WITH RAINFALL  ###  
###########################  
report rain_id = area; # only 1 rainfall zone 
# for >1 rainfall zones based on points use ArcGIS or: 
# report id = spreadzone(points, 0, friction); 
# with; points = boolean map with locations of rainfall stations 
# and friction = friction map (see page 70 of LISEMdocumentation6) 
################# 
### BASE MAPS ###  
################# 
report grad = max(sin(atan(slope(dem))),0.001);  
report Ldd = lddcreate(dem, 1e20,1e20,1e20,1e20); # correct topo for local depressions # 
report outlet = pit(Ldd); 
report outpoint = pit(Ldd); 
#####################  
### LAND USE MAPS ###  
#####################  
report per = lookupscalar(unittbl, 12, lu); # fraction soil cover  
report ch = lookupscalar(unittbl, 14, lu); # crop height (m) 
# choose method for lai: 
report lai = lookupscalar(unittbl, 13, lu); # leaf area index 
# or: (explained on page 71-72 from LISEMdocumentation6_170215) 
# per = min(per, 0.95);  
# lai = ln(1-coverc)/-0.4; 
# report lai = if(per gt 0, lai/per, 0); # leaf area index 
#################### 
### SURFACE MAPS ###  
#################### 
report rr = lookupscalar(unittbl, 1, lu); # random roughness (=std dev in cm)  
report mann = lookupscalar(unittbl, 2, lu); # Manning's n 
# report mann = 0.051*rr+0.104*per; # or use simple regression from Limburg data: CAREFULL this is 
not published  
report stone = lookupscalar(unittbl, 3, lu); # stone fraction  
# report roadwidth = roads * scalar(widthroads); 
#################### 
### EROSION MAPS ###  
#################### 
report coh = lookupscalar(unittbl, 4, lu);  
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report cohadd = lookupscalar(unittbl, 15, lu);  
report aggrstab = lookupscalar(unittbl, 5, lu);  
report D50 = lookupscalar(unittbl, 6, lu); 
##########################################  
### INFILTRATION MAPS for GREEN & AMPT ###  
########################################## 
report ksat = lookupscalar(unittbl, 7, lu);  
report psi = lookupscalar(unittbl, 8, lu); 
report thetas = lookupscalar(unittbl, 9, lu);  
report thetai = lookupscalar(unittbl, 10, lu);  
report soildep = lookupscalar(unittbl, 11, lu);  
# report ksat2 = lookupscalar(unittbl[name], [col.nr], [map.name]);  
# report psi2 = lookupscalar(unittbl[name], [col.nr], [map.name]); 
# report thetas2 = lookupscalar(unittbl[name], [col.nr], [map.name]);  
# report thetai2 = lookupscalar(unittbl[name], [col.nr], [map.name]);  
# report soildep2 = lookupscalar(unittbl[name], [col.nr], [map.name]); 
####################  
### CHANNEL MAPS ### 
#################### 
# report lddchan= lddcreate(dem*chanmask,1e20,1e20,1e20,1e20);  
# report chanwidth=chanmask*scalar(Chanwidth);  
# report chanside=chanmask*scalar(Chanside); 
# report changrad=max(0.001,sin(atan(slope(chanmask*dem))));  
# report chanman=chanmask*scalar(Chanman);  
# report chancoh=chanmask*scalar(Chancoh); 
############################ 
### CHANNEL INFILTRATION ### 
############################ 
# report chanksat = chanmask*scalar(ChanKsat); 
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Annex 4 – Rainfall files used for LISEM runs 
March 15th rainfall file 

T (min) I(mm/h)

  

1 24 

2 24 

3 24 

4 24 

5 24 

6 36 

7 24 

8 36 

9 24 

10 18 

11 18 

12 18 

13 18 

14 18 

15 18 

16 18 

17 18 

18 18 

19 18 

20 18 

21 18 

22 12 

23 12 

24 12 

25 12 

26 12 

27 12 

28 12 

29 12 

30 12 

31 12 

32 0 

33 12 

34 12 

35 0 

36 12 

37 0 

38 0 

39 0 

40 12 

41 0 

42 0 

43 0 

44 0 

45 0 

46 0 

47 0 

48 12 

49 0 

50 0 

51 0 

52 0 

53 0 

54 12 

55 0 

56 0 

57 0 

58 0 

59 0 

60 12 

61 0 

62 0 

63 0 

64 0 

65 12 

66 0 

67 0 

68 0 

69 12 

70 0 

71 0 

72 0 

73 0 

74 0 

75 0 

76 0 

77 0 

78 0 

79 0 

80 0 

81 0 

82 0 

83 0 

84 0 

85 0 

86 0 

87 0 

88 12 

89 0 

90 12 

91 0 

92 0 

93 12 

94 0 

95 12 

96 12 

97 12 

98 12 

99 12 

100 12 

101 12 

102 12 

103 12 

104 12 

105 12 

106 12 

107 12 

108 12 

109 12 

110 24 

111 12 
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112 12 

113 24 

114 12 

115 12 

116 24 

117 12 

118 12 

119 24 

120 12 

121 12 

122 12 

123 0 

124 0 

125 12 

126 0 

127 0 

128 12 

129 0 

130 0 

131 0 

132 0 

133 0 

134 0 

135 0 

136 0 

137 12 

138 0 

139 0 

140 0 

141 0 

142 0 

143 0 

144 0 

145 0 

146 0 

147 0 

148 0 

149 0 

150 0 

151 0 

152 0 

153 0 

154 0 

155 0 

156 12 

157 0 

158 0 

159 0 

160 0 

161 0 

162 0 

163 0 

164 0 

165 0 

166 12 

167 0 

168 0 

169 0 

170 0 

171 0 

172 0 

173 0 

174 0 

175 0 

176 0 

177 0 

178 0 

179 0 

180 0 

181 0 

182 0 

183 0 

184 0 

185 0 

186 0 

187 0 

188 0 

189 0 

190 0 

191 0 

192 0 

193 0 

194 12 

195 0 

196 0 

197 0 

198 0 

199 0 

200 0 

201 0 

202 0 

203 0 

204 0 

205 0 

206 0 

207 0 

208 0 

209 0 

210 0 

211 0 

212 0 

213 0 

214 0 

215 0 

216 0 

217 0 

218 0 

219 0 

220 0 

221 0 

222 0 

223 0 

224 0 

225 0 

226 0 

227 12 

228 0 

229 0 

230 0 

231 0 

232 0 

233 0 

234 0 

235 0 
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236 0 

237 0 

238 0 

239 0 

240 0 

241 12 

 

May 28th rainfall file 

T (min) I(mm/h)

  

0 0 

1 0 

2 12 

3 12 

4 12 

5 24 

6 24 

7 24 

8 12 

9 0 

10 0 

11 0 

12 0 

13 0 

14 0 

15 12 

16 12 

17 24 

18 24 

19 12 

20 24 

21 0 

22 12 

23 0 

24 0 

25 12 

26 0 

27 0 

28 0 

29 12 

30 0 

31 0 

32 0 

33 0 

34 12 

35 0 

36 0 

37 0 

38 12 

39 0 

40 0 

41 0 

42 0 

43 0 

44 0 

45 0 

46 0 

47 12 

48 0 

49 0 

50 0 

51 0 

52 0 

53 12 

54 0 

55 0 

56 0 

57 0 

58 0 

59 0 

60 0 

61 0 

62 0 

63 0 

64 12 

65 0 

66 0 

67 0 

68 0 

69 0 

70 0 

71 0 

72 0 

73 0 

74 0 

75 0 

76 0 

77 0 

78 0 

79 0 

80 0 

81 0 

82 0 

83 0 

84 0 

85 0 

86 0 

87 0 

88 0 

89 0 

90 0 

91 0 

92 12 

93 0 

94 0 

95 0 

96 0 

97 0 

98 0 

99 0 

100 0 
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September 29th rainfall file 

T (min) I(mm/h) 

1 12 

2 0 

3 0 

4 0 

5 0 

6 12 

7 0 

8 12 

9 24 

10 12 

11 12 

12 0 

13 12 

14 12 

15 0 

16 12 

17 0 

18 12 

19 24 

20 72 

21 12 

22 0 

23 0 

24 0 

25 0 

26 0 

27 0 

28 12 

29 0 

30 0 

31 0 

32 0 

33 0 

34 0 

35 0 

36 0 

37 0 

38 0 

39 0 

40 0 

41 0 

42 0 

 


